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Abstract

We characterize optimal normalization policy in a framework in which agents’ ex-
pectations can deviate from the rational expectations benchmark and the central bank
faces cost-push shocks. When interest rate fluctuations are costless, our findings in-
dicate that the interest rate is the primary tool for managing inflationary pressures,
consistently outperforming balance sheet adjustments, regardless of the expectations
formation process. However, under de-anchored expectations, an increasing role for
balance sheet management arises when interest rate fluctuations become costly. Fi-
nally, our analysis reveals that expectations significantly influence the optimal interest
rate trajectory, whereas their impact on the optimal balance sheet path is comparatively
minimal.
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1 Introduction

In response to historically low interest rates following the global financial crisis, central
banks in advanced economies expanded their balance sheets to historically high levels. The
exit from the effective lower bound (ELB) and the return to conventional policy tools that
followed the recent inflation surge have raised concerns about whether large balance sheets
should be maintained. As shown in models with rational expectations (RE), the balance
sheet entails higher costs and is less effective as a policy instrument in normal times (see
Sims and Wu, 2021). At the same time, the effectiveness of standard policy tools, such as
the policy rate, can deteriorate when expectations deviate from RE. This paper therefore
examines whether an increased role for balance sheet adjustments to achieve stabilization
is justified when agents’ expectations are de-anchored, using a small-scale model.

We use the four-equation New Keynesian model of Sims et al. (2023) and characterize
the optimal normalization policy, the latter involving the setting of both the short-term
policy rate and the central bank balance sheet. We extend the model to incorporate a
resource cost for central bank bond holdings as in Kabaca et al. (2023). In our model, agents
may hold de-anchored expectations, defined as the misperception of the long-run mean of
macroeconomic variables, which are influenced by short-term forecast errors, following the
framework of Eusepi et al. (2020).

We emphasize the following main takeaways. First, we underscore the primary role
of the short-term policy rate in addressing inflationary pressures after a cost-push shock,
which we find to be more effective than the balance sheet in curbing inflation, independent
of the private sector’s expectations. Second, in scenarios where both policy instruments are
set optimally following a cost-push shock, expectations influence the optimal interest rate
path considerably, necessitating greater monetary policy tightening when agents hold de-
anchored expectations. In contrast, expectations play a limited role in shaping the optimal
balance sheet trajectory. Third, when variations in the short-term rate become costly, central
bank balance sheet management takes on a greater role under de-anchored expectations,
helping to dampen the necessary short-term rate hikes after a cost-push shock. Finally, when
credit shocks arise, it is the central bank balance sheet, and not the short-term policy rate,
the better-suited tool for stabilization, regardless of the expectations formation mechanism.
Thus, the primacy of the short-term policy rate depends on the nature of the shock.
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We derive optimal normalization policy under rational and de-anchored expectations
relying on a model-consistent welfare criterion, in the spirit of Rotemberg and Woodford
(1997). Similar to Molnár and Santoro (2014), we show analytically that the policy rate
should react more aggressively to inflation, after a cost-push shock, when expectations are
de-anchored than when they are rational.1 Importantly, we demonstrate that the optimal
interest rate rule under RE is a limiting case of that under de-anchored expectations. Sim-
ilarly, we derive the optimal path for the central bank balance sheet. We highlight that the
balance sheet is a less effective tool for responding to cost-push shocks due to the conflict-
ing supply and demand channels of balance sheet policy.2 Moreover, its optimal path is
only weakly affected by the expectations formation mechanism. Finally, we show that the
inflation-output gap trade-off becomes more severe under de-anchored expectations.

The post-pandemic surge in inflation, driven to a significant extent by cost-push (or
supply-side) shocks, led central banks of advanced economies to initiate a rate hiking cycle
while still operating with a significantly expanded balance sheet. We simulate the model
to generate an environment that reflects these conditions. This allows us to explore the dy-
namics and to quantify the welfare costs of each policy instrument using a welfare-relevant
measure. Additionally, we allow for the cost-push shock to be persistent as opposed to our
analytical results where i.i.d. shocks are considered for tractability. We show that the wel-
fare costs from setting only the short-term rate optimally after an adverse cost-push shock
are limited in comparison to the welfare costs of balance sheet adjustments, regardless of
the expectations formation mechanism. We further extend our quantitative analysis beyond
our analytical results along two dimensions, namely by penalizing short-term interest rate
variations, first, and second, by considering a scenario in which the economy is hit by credit
and cost-push shocks simultaneously.

Under de-anchored expectations, the balance sheet plays a more prominent role when
variations in the short-term policy rate are costly. Optimal policy in this case prescribes a
milder interest rate hike than when variations are not costly, following a cost-push shock.
To offset this milder response, the central bank must shrink its balance sheet more. Under
RE instead, costly variations in the short-term rate lead to negligible changes in the optimal

1Gáti (2023) and Gaspar et al. (2006) also show numerically that the policy rate should react more ag-
gressively to inflation when expectations become de-anchored or when agents have adaptive expectations.

2The role of the supply versus the demand channel of balance sheet policies is discussed in Sims et al.
(2023). See also Boehl et al. (2022) for a quantitative analysis for the US.
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policy paths and the resulting allocations.
Finally, our results highlight that in the presence of large credit shocks, central banks

may need to moderate the pace of quantitative tightening (QT) to mitigate the negative
effects on financial stability. When responding optimally to a combination of cost-push and
credit shocks, the central bank tends to rely on the policy rate for inflation control and
the balance sheet for maintaining financial stability. This finding holds regardless of the
expectations formation mechanism, indicating that the preference for the short-term rate
as a stabilization tool depends on the nature of the shock, being more effective for cost-push
shocks, while the balance sheet is better suited to address credit disturbances.

1.1 Related literature

The recent policy normalization of the major central banks has led to a growing literature
on optimal monetary policy normalization. Benigno and Benigno (2022) show that QT
should start before the liftoff of the policy rate. Focusing on the portfolio balance channel,
Cantore and Meichtry (2023) show instead that rate hikes should start prior to QT. Using
a model with a banking sector, Karadi and Nakov (2021) argue that the optimal balance
sheet normalization should be gradual due to the slowing down of the banking sector recap-
italization. Our paper is distinct from the above contributions in that it considers optimal
normalization policy under de-anchored expectations.

The literature on optimal monetary policy under bounded rationality is vast (see Gaspar
et al., 2006; Dennis and Ravenna, 2008; Gaspar et al., 2010; Molnár and Santoro, 2014;
Eusepi and Preston, 2018; Mele et al., 2020; Hommes et al., 2023; Gáti, 2023). Molnár
and Santoro (2014) and Gaspar et al. (2010) show that an interemporal trade-off arises
under optimal policy when agents learn adaptively. This coincides with a more aggressive
optimal interest rate trajectory, as in Gáti (2023) and Molnár and Santoro (2014), com-
pared to the RE benchmark.3 Accounting for long-run interest rate expectations, Eusepi
et al. (2020) show instead that aggressive policy responses can be sub-optimal due to the
induced volatility in long-term interest rates.

Sims and Wu (2020) explore the substitutability between conventional monetary policy
3Using an estimated New Keynesian model with endogenous forecast switching, Fischer (2022) finds that

the optimal response to changes in inflation is significantly higher when expectations are endogenously an-
chored compared to RE.
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and QE at the effective lower bound (ELB) and find that, when the policy rate is fixed, QE
can indeed serve as an effective substitute to achieve price stability, albeit with different
implications for the output gap compared with conventional policy.

The paper is organized as follows. Section 2 describes the extension of the model by
Sims et al. (2023) to account for costs associated with central bank asset holdings. Section
3 presents analytical results from the design of optimal monetary policy under RE and de-
anchored expectations. Section 4 presents our simulations from optimal policy. Section 5
concludes.

2 Model

The model is based on Sims et al. (2023), which adds a role for asset purchases by the cen-
tral bank in a standard three-equation New Keynesian model. The non-reduced framework
consists of two types of households, the patient (referred to as the parent) and the impa-
tient (the child), financial intermediaries modeled as in Gertler and Karadi (2011), and a
standard production side of the economy split into three sectors (final output, retail output,
and wholesale output). To this baseline model, we add a cost of QE/QT, as a proxy for the
unmodeled distortions and political costs of maintaining a positive central bank balance
sheet as in Karadi and Nakov (2021) and Kabaca et al. (2023). In its log-linearized form,
the model boils down to four equations.4 The IS equation and the New Keynesian Phillips
curve are specified as follows:

xt = Ẽtxt+1 −
1− z

σ

(
rst − Ẽtπt+1 − rft

)
−
(
zb̄cb +

τQE

Y

)(
Ẽtqet+1 − qet

)
− zb̄FI

(
Ẽtθt+1 − θt

)
(1)

πt = βẼtπt+1 + γζxt −
γσ

1− z

(
zb̄cb +

τQE

Y

)
qet −

γσz

1− z
b̄FIθt + cpt (2)

The variable πt denotes inflation, while xt = yt − y∗t is the output gap, with y∗t being
potential output.5 The short-term nominal interest rate is denoted rst . The real value of

4Further details on the model and the introduction of the QE/QT cost in the baseline model can be found
in the online Appendix A.

5Note that, unlike in the standard New Keynesian model, in Sims et al. (2023), the equilibrium level of
potential output is consistent with price flexibility and no credit shocks, as both frictions distort the competitive
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the central bank bond portfolio is captured by qet.6 The term Ẽt captures the fact that
private agents might have non-rational expectations, which we discuss in detail below. The
parameter σ is the inverse of the intertemporal elasticity of substitution, β is the subjective
discount factor, γ is the elasticity of inflation with respect to real marginal costs and ζ is
the elasticity of real marginal costs with respect to the output gap. The parameter z ∈ [0, 1)

represents the share of impatient households in the total population, while b̄cb and b̄FI are
the steady state long-term bond holdings of the central bank and financial intermediaries,
respectively, as a share of the total outstanding long-term bonds. The cost of QE/QT is
captured by τ , and QE

Y
is the steady-state ratio of central bank bond holdings to GDP.

In the model, the child finances her consumption by issuing long-term bonds that the
central bank and financial intermediaries can buy. Subsequently, the child receives full
bailout from the parent to service her debt. This creates two effects: on the demand side,
a rise in the central bank’s bond portfolio, qet, boosts the consumption of the child, and
thereby aggregate consumption. This increases the output gap, xt, and inflation. On the
supply side, balance sheet policy exerts instead a negative impact on inflation. This arises
from the full bailout that the parent provides to the child. The more the child borrows, the
stronger the negative wealth effect incurred by the parent who in response supplies more
labor. As a result, real wages and, hence, real marginal costs decrease, creating a downward
pressure on inflation as opposed to the demand channel.

The economy is subject to shocks to the natural rate, rft , to price cost-push shocks,
cpt, and to credit shocks, θt. These shock processes are exogenous AR(1) processes, with
persistence ρj and standard deviation sj for j = {f, cp, θ}:

rft = ρfr
f
t−1 + sfεf,t, εf,t ∼ N(0, 1) (3)

cpt = ρcpcpt−1 + scpεcp,t, εcp,t ∼ N(0, 1) (4)
equilibrium.

6Although we are interested in normalization policy and hence in QT, we use the notation of Sims et al.
(2023) whose focus instead is on QE. Given our focus on QT, we assume that a central bank has positive asset
holdings at the steady state. In her speech on March 27, 2023, at an event organized by Columbia University
and SGH Macro Advisors, Isabel Schnabel stated that "the size of our balance sheet will not return to the levels
seen before the global financial crisis" and concluded by stating "Ultimately, our obligation to act in line with
the principle of an open market economy implies that, in the steady state, the size of our balance sheet should
only be as large as necessary to ensure sufficient liquidity provision and effectively steer short-term interest rates
towards levels that are consistent with price stability over the medium term". Given the modeling of the central
bank balance sheet in Sims et al. (2023), we treat as plausible the assumption of positive central bank asset
holdings at the steady state.
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θt = ρθθt−1 + sθεθ,t, εθ,t ∼ N(0, 1) (5)

Our analysis focuses primarily on a fully optimal normalization policy in which both
monetary policy instruments, namely the short-term policy rate and central bank asset hold-
ings, are set optimally. We also compare the main scenario in which both instruments are
used optimally with suboptimal scenarios in which only one of the two instruments is set
optimally.7 This allows us to explore the efficacy of each instrument in isolation to achieve
the central bank’s objectives. We distinguish two suboptimal scenarios. In the first, we look
at the optimal interest rate policy only, where we assume that the central bank bond port-
folio follows a stationary AR(1) process, as specified in equation (7) below. In the second,
we examine the optimal path of QT under a predetermined interest rate policy given by
a Taylor rule, as specified in equation (6) below, also taking into account the zero lower
bound (ZLB):

rst = max [0 ;ϕππt + ϕxxt + srεr,t] , εr,t ∼ N(0, 1) (6)

qet = ρqqet−1 + sqεq,t, εq,t ∼ N(0, 1) (7)

with ρq the persistence of the QE/QT process, and sr and sq the standard deviations of the
monetary policy shocks. The parameters ϕπ and ϕx govern the reaction of the short-term
nominal rate to changes in inflation and the output gap.

Expectations In this model, some or all private agents can have non-rational expectations.
The economy is populated by two types of agents, namely those with RE (or anchored
agents) and those with de-anchored expectations. Agents with RE know the actual law
of motion of the economy.8 Anchored agents have expectations that are well-aligned with
the central bank’s stated targets. Importantly, they understand the communication (e.g.,
forward guidance) of the central bank. This allows the policymaker to commit to a spe-
cific policy strategy, which these agents will understand and factor into their expectations.
Anchored agents forecast the evolution of the economy using the minimum state variable

7We do so by looking at the welfare costs of using one monetary policy tool optimally relative to using
both in Section 4. We also report simulations when the interest rate only is set optimally in Section 4, while
the case of the balance sheet only is reported in the online Appendix C.3.

8In a scenario where a fraction of agents have RE, while others do not, agents with RE thus understand
that there is a share of agents with de-anchored expectations. Moreover, they know the share of agents with
de-anchored expectations with certainty.
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solution of the model. Their expectations thus have the following law of motion:

Ẽa
t (zt+1) = (a+ byt + cwt) (8)

where zt = [πt, xt, qet, θt]
′ gathers the expectational variables, the vector a represents the

constant terms including the central bank’s inflation target, the matrix bmaps the impact of
contemporaneous variables, yt = [qet, r

f
t , cpt, θt]

′, and the matrix c accounts for the impact
of each shock, wt = [εf,t, εcp,t, εθ,t, εr,t, εq,t]

′, on expectations.9

The remaining share of agents has de-anchored expectations and forecast the long-run
mean of endogenous variables through simple constant gain learning, as in Eusepi et al.
(2020) and Molnár and Santoro (2014). The beliefs of de-anchored agents follow:

Ed
t zt+1 ≡ ωz

t = ωz
t−1 + ḡ

(
zt−1 − ωz

t−1

) (9)

in which ḡ is the constant-gain learning parameter, which governs the extent to which
expectations are affected by short-term forecast errors. These agents misperceive the un-
observed long-run mean (or drift) ωz

t of variables zt = [πt, xt, qet, θt]
′, and revise their ex-

pectations based on previous short-term forecast errors (zt−1 − ωz
t−1

). They are therefore
backward-looking, and do not necessarily believe that the central bank can credibly commit
to reaching its announced target. As Eusepi and Preston (2018) point out, under constant
gain learning, the learning process does not converge point-wise to rational expectations as
the estimated drift is constantly revised with new information.10 For values of parameter
ḡ sufficiently close to zero, stability conditions yield eigenvalues lying inside the unit circle
for the law of motion of beliefs.11

Aggregate expectations are therefore the sum of anchored and de-anchored agents’ ex-
9Note that central bank asset holdings, qet, appear in vector yt as long as qet is assumed to follow

an AR(1) process. When we consider the fully optimal normalization policy where both rst and qet are
set optimally, the vector yt boils down to yt = [rft , cpt, θt]

′. In the case where both agents with rational
and agents with de-anchored expectations are included, the vector of contemporaneous variable becomes
yt = [πt, xt, qet, r

f
t , cpt, θt,ω

z
t ]

′ and thus contains ωz
t , which relates to the beliefs of de-anchored agents about

variables zt = [πt, xt, qet, θt]
′. The existence of de-anchored expectations also leads to the inclusion of addi-

tional endogenous variables {πt, xt}.
10In the literature on optimal monetary policy with boundedly rational agents, Molnár and Santoro (2014)

and Gaspar et al. (2010) derive optimal policy also assuming constant gain learning while Gáti (2023), Eusepi
and Preston (2018) assume that agents’ learning process converges point-wise to rational expectations.

11As shown Evans and Honkapohja (2001) the condition of stability of inflation expectations under constant
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pectations, weighted by their relative shares na,z and nd,z, respectively:

Ẽzt+1 = na,z Ẽa (zt+1) + nd,z Ẽd (zt+1)

= na,z
[
a+ byt + cwt

]
+ nd,z

[
ωz
t−1 + ḡ

(
zt−1 − ωz

t−1

) ] (11)

with na,z + nd,z = 1.12 In our main results in Section 3 and Section 4, we focus on the
two extreme cases in which either all agents have rational expectations (i.e. na,z = 1 and
nd,z = 0), or they all have de-anchored expectations (i.e. na,z = 0 and nd,z = 1). In online
Appendix C.4, we allow the fractions to vary, such that the economy is populated by both
rational and de-anchored agents.13

Our modeling of the expectations formation is in line with the Euler-equation approach,
as in Bullard andMitra (2002), Ferrero (2007) and Orphanides andWilliams (2007, 2008).
This approach asserts decision rules in which only one-period-ahead expectations matter for
agents’ decisions. We acknowledge that this poses some limitations, the main related to the
standard characterization of the transmission mechanism of monetary policy embedded in
the New Keynesian framework. The model stipulates that not only the current interest rate
but also the entire future sequence of expected one-period rates affects agents’ decisions
today. The anticipated utility approach (Kreps, 1998; Sargent, 1999; Preston, 2005; Wood-
ford, 2013) instead accounts for this feature as it is consistent with solving infinite-horizon
intertemporal decision problems that depend on long-term beliefs about policy. Hence, in
this case, commitment to a given policy rate path, for instance, affects agents’ expectations
today even though they might be boundedly rational. However, as regards the central bank’s
balance sheet decisions, as we show in Section 3 and Section 4, expectations play a limited
role. As regards, the short-term rate though we show that expectations do matter and affect
the aggressiveness with which the central bank reacts to inflation.14

gain learning in a simple three equation New-Keynesian model is determined by the eigenvalue:

1− ḡ
1− ϕ−1

π

1− β
(10)

We consider parameterizations of the constant gain learning parameter that guarantee stability of agents’
beliefs.

12In this paper, we calibrate these fractions at a fixed level, uniformly applied across all variables.
13In this case, the shares of each type of expectations formation are uniform across the two types of agents,

the parent and the child.
14Eusepi et al. (2020) show that under the anticipated utility approach, the interest rate should respond

less aggressively than under optimal discretion with RE to inflation fluctuations when long-term interest
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Baseline calibration For our optimal policy exercises, we mainly parameterize the model
following Sims et al. (2023). The subjective discount factor, β, and intertemporal elasticity
of substitution, 1/σ, follow standard values from the existing literature. The consumption
share of the child in total consumption z is set to one-third.15 The steady state bond holdings
for the central bank and financial intermediaries, b̄cb = 0.3 and b̄FI = 0.7, are derived from
the calibrations of other steady state parameters. The parameters γ and ζ are based on
structural parameters of the non-linear model, including the Calvo pricing parameter, as
described in Sims et al. (2023).16 The resource cost of QE/QT follows Kabaca et al. (2023).
We set the gain, ḡ, equal to the value estimated in Eusepi et al. (2020), in the period after
1999. When the short-term interest rate is not set optimally, we assume that it follows a
Taylor rule as in (6) with ϕπ = 1.5 and ϕx = 0. We set all standard deviation of shocks
equal to 0.01, while first-order autocorrelation of all shocks are set to 0.8. The calibration
of the parameters is summarized in Table 1.

rate expectations matter. Instead, they show that when the central bank can control the output gap a more
aggressive response to inflation is optimal. In a recent contribution Gáti (2023) using the anticipated utility
approach and assuming time-varying de-anchoring of inflation expectations finds that optimal policy moves
the interest rate aggressively when expectations de-anchor, a result in line with the Euler-equation approach
(see Ferrero, 2007; Orphanides and Williams, 2005). In fact, Gáti (2023) shows that her conclusions remain
unchanged under Euler-equation learning.

15Sims et al. (2023) described this parameter as calibrated in such a way that it approximately reflects the
proportion of durable consumption and private investment in the overall private non-government domestic
spending.

16In particular, γ = (1−ϕ)(1−ϕβ)
ϕ in which ϕ ∈ (0, 1] is the probability of non-price adjustment. Additionally,

ζ = χ(1−z)+σ
1−z in which χ is the inverse Frisch labor supply elasticity for the parent.
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Table 1: Calibrated Parameters

Parameter Value or Target Description
β 0.995 Discount Factor
z 0.33 Consumption share of the child
σ 1 Inverse elasticity of substitution
b̄cb 0.3 Steady state share of central bank’s LT bond holdings
b̄FI 0.7 Steady state share of fin. intermediary’s LT bond holdings
γ 0.086 Elasticity of inflation with regard to marginal cost
ζ 2.49 Elasticity of marginal cost with regard to the output gap
τ 0.01 Resource cost of QE
QE
4Y

0.1 Steady state ratio of QE to annualized output
ϕπ 1.5 Inflation reaction coefficient in the Taylor rule
ϕx 0 Output gap reaction coefficient in the Taylor rule
ρq 0.8 Persistence of the QE/QT process
ḡ 0.02 Learning gain of de-anchored agents
ρf 0.8 Persistence of natural rate shocks
ρcp 0.8 Persistence of cost push shocks
ρθ 0.8 Persistence of credit shocks

3 Optimal normalization policy

In this section, we characterize the optimal normalization policy, namely the optimal set-
ting of the short-term policy rate and the central bank asset holdings, first under rational
expectations, in Subsection 3.1, and then under de-anchored expectations, in Subsection
3.2. In both cases, we assume that the central bank has full information about the way the
private sector forms expectations, be it rational or de-anchored, and about the actual law
of motion of the economy. The central bank maximizes the economy’s welfare subject to
the structural equations characterizing its dynamics. Our focus is on the design of optimal
policy away from the ZLB. We derive the welfare loss function based on a second-order
approximation of the utility functions of the two types of households, the parent and the
child. Aggregate welfare is summarized as:

Wt = Vt + Vb,t (12)

where now Vt and Vb,t represent second-order approximations of the utility of the parent
and the child, respectively. Our derivation of the welfare loss function is summarized in the
following proposition.
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Proposition 1. The sum of the second-order approximations of the parent and child utilities
is given by:

Wt = W − UCY

{
(1− z)

(
C

2

)
c2t + z

(
Cb

2

)
c2b,t +

Y ϵϕ

2(1− ϕβ)(1− ϕ)
π2
t

+
1

2
(υ̃pt )

2 + τ
Qbcb

Y
qet + τQbcb

Qbcb

2Y
qe2t

}
+ t.i.p.+O

(
||ξ3||

)
Proof. In online Appendix B.1.

A couple of important observations stand out from Proposition 1. First, fluctuations
in the consumption of each type are costly. Second, the central bank’s balance sheet, as
measured by qet, enters the loss function. Fluctuations in it therefore matter as they are
costly.17 There is also an indirect channel which is related to the way changes in central
bank’s bond holdings affect the consumption of each group. If, for instance, the central
bank decides to unwind its balance sheet, the consumption of the child, cb,t, will shrink
because the central bank will buy less of its bonds and hence the child will borrow less to
finance its consumption ceteris paribus.18 On the other hand, given that the parent provides
full bailout to the child, lower borrowing implies lower bailout which in turn boosts parent’s
consumption. The decision of the central bank about its balance sheet, qet, determines this
trade-off. Observing the loss function, it is clear that the consumption shares captured by
z and 1− z play a key role in determining whose consumption fluctuations weigh more in
that decision. Moreover, the steady state asset holdings (i.e., the size of the balance sheet)
of the central bank play a key role in the design of optimal monetary policy.

3.1 The case of rational expectations

To get analytical results that are more tractable, we derive here the optimal normalization
policy under discretion. Later in our numerical exercises, we also display the case of com-
mitment. Minimizing the welfare loss subject to the model structural equations leads to the

17In our setup, central bank’s asset holdings are non-zero at the steady state. Given that they are costly, the
steady state is distorted. Hence, optimal monetary policy is designed under a distorted steady state, in the
spirit of Benigno and Woodford (2005).

18Recall that in the original model, the total stock of long-term bonds issued by the child are held by the
financial intermediaries and the central bank.
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following targeting criteria:19

ct = −γζ (1− z)
λπ
λC

πt (13)

qet = − τQE

2λqeYΨ
− λπ
λqeΨ

[(
γζ − γσ

1− z

)(
zb̄cb +

τQE

Y

)]
πt −

λCb
b̄cbb̄FI

λqeΨ
θt (14)

where Ψ = 1 + (b̄cb)2
λCb

λqe
and ζ = χ(1−z)+σ

1−z
. The term λπ = Y ϵϕ

2(1−ϕβ)(1−ϕ)
is the weight on

inflation stabilization in the welfare loss function defined in Proposition 1 above and λC ,λCb
,

λqe > 0 are the corresponding weights on the parent’s and the child’s consumption and
on the size of the central bank balance sheet, respectively. The first targeting criterion in
equation (13) states that in the face of inflationary pressures from a cost-push shock the
central bank must respond by lowering the consumption of the parent. Given their stronger
exposure to inflation relative to the child and their higher consumption share, 1 − z, it is
natural for the central bank to trade their consumption off when trying to lower inflation.
Given the full bailout they offer to the child assumed in Sims et al. (2023), the consumption
of the latter depends primarily on the central bank balance sheet. In fact, as shown in Sims
et al. (2023) and in our online Appendix A.7 the consumption of the child boils down to:

cb,t = b̄FIθt + b̄cbqet (15)

Following inflationary pressures due to a cost-push shock, the central bank must shrink
its balance sheet, qet, if it wants to curb inflation further, as captured by the optimality
criterion in equation (14).20 However, trading off the consumption of the child is heavier
for the central bank, than that of the parent, due to the demand and the supply channels
of central bank balance sheet policy working in opposite directions. The demand channel
is captured by γζ which is the coefficient on the slackness term in the Phillips curve in
(2). The term γσ

1−z
represents the supply channel as it captures the direct negative impact

of balance sheet policy on inflation, captured again in the Phillips curve equation (2).21
19Complete derivations are provided in the online Appendix B.2.
20The constant term in (14) arises because central bank balance sheet adjustments have been assumed to

be costly distorting thereby the steady state. This also rationalizes the negative sign next to the constant term
which has the interpretation that, for any given level of inflation, it is optimal for the central bank to hold less
long-term bonds.

21In the model, the demand channel of central bank balance sheet policy operates through the effect of
output on inflation. Unwinding the central bank balance sheet leads to a decline in economic activity and,
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While the two channels operate in opposite directions, as indicated by the term γζ − γσ
1−z

,
the demand channel dominates because γζ > γσ

1−z
. However, the supply channel of balance

sheet policy tends to weaken the demand channel. As a result, controlling inflation via
balance sheet policy requires larger policy interventions. Trading off the consumption of
the child to control inflation becomes thus more costly, given also that fluctuations in central
bank’s balance sheet entail welfare costs. Trading off the consumption of the parent, as in
(13), instead operates against the supply channel of balance sheet policy.22

Plugging the above optimality conditions in the Phillips curve (2), and assuming zero
shock persistence for tractability (ρθ, ρcp = 0), we obtain the equilibrium inflation under
optimal discretionary policy:

πt = − τQE

2λqeYΨς (1− β)
ϖ +

[(
γζ − γσ

1− z

)
z − b̄cb

λCb
ϖ

λqeΨ

]
b̄FI

ς
θt +

1

ς
cpt (16)

where Ψ, ς, and ϖ are all non-linear functions of structural parameters, specified in online
Appendix B.2. Using (16) in (14) we obtain the equilibrium balance sheet under optimal
discretionary policy, which we also derive in detail in the online Appendix B.2:

qet = ωqe − ωqe
θ θt − ωqe

cpcpt (17)

where:

ωqe =
τQE

2λqeYΨ

[
λπ
λqeΨ

ϖ2

ς (1− β)
− 1

]
(18)

ωqe
θ =

λπ
λqeΨ

ϖ

[(
γζ − γσ

1− z

)
z − b̄cb

λCb
ϖ

λqeΨ

]
b̄FI

ς
+ b̄cb

λCb

λqeΨ
b̄FI (19)

ωqe
cp =

λπ
λqeΨ

ϖ

ς
(20)

through the Phillips curve, to disinflation. The supply channel of balance sheet policy instead results in a
negative relationship between central bank asset holdings and inflation. This operates as follows. A decline
in central bank long-term bond holdings implies that the child will borrow less. Given the assumption of a full
bailout by the parent, the latter experiences a positive income effect stemming from a lower bailout due to
lower borrowing by the child. The positive income effect leads to a decline in labor supply by the parent and
thereby to a rise in real wages and marginal costs of firms. Hence, the supply channel suggests that shrinking
the balance sheet is inflationary.

22The sensitivity of the inflation’s response to central bank balance sheet shocks arising from a conflict
between demand and supply channels, is also emphasized in larger structural models as Boehl et al. (2022)
and Sims and Wu (2021). This is also examined in Sims et al. (2023) through the lens of a small-scale
framework.
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Combining the resource constraint of the economy with the optimal criterion (13) and (14)
and the equilibrium inflation (16), we obtain an analogous expression for the output gap:23

xt = ωx − ωx
θ θt − ωx

cpcpt (21)

where:

ωx = − (1− z)2 γζ
λπ
λC
ωπ +

(
zb̄cb +

τQE

Y

)
ωqe

ωx
θ =

[
(1− z)2 γζ

λπ
λC
ωπ
θ +

(
zb̄cb +

τQE

Y

)
ωqe
θ

]
zb̄FI

ωx
cp = (1− z)2 γζ

λπ
λC
ωπ
cp +

(
zb̄cb +

τQE

Y

)
ωqe
cp

where ωπ, ωπ
θ and ωπ

cp are the constant term and the coefficients on the credit, θt, and the
cost-push shock, cpt, respectively, in the expression for the equilibrium inflation in (16).
Combining the resource constraint and the optimality condition (13) with the IS equation
(1) and solving for the policy rate, we can derive an interest rate rule that delivers the opti-
mal paths for inflation and the output gap consistent with that described by the optimality
condition (23) discussed below. Moreover, this interest rate rule is consistent with the op-
timality condition (14) describing the optimal path of the central bank balance sheet. The
optimal interest rate rule considering the case of zero shock persistence (ρθ, ρcp = 0) reads
then as follows:

rst = rft + γσζ
λπ
λC

(1− z) πt (22)

The optimal interest rate rule above states that the central bankmust increase the short-term
rate, rst , upon inflationary pressures. Plugging the equilibrium inflation, equation (16), one
can get the equilibrium interest rate under optimal discretionary policy. Finally, using the
resource constraint of the economy, the optimal criteria (13) and (14) and the expression
for child’s consumption (15), we arrive at the usual inflation-output gap trade-off, which
for simplicity we can express in the absence of credit shocks (i.e. θt = 0) as follows:

xt = −
(
zb̄cb +

τQE

Y

)
τQE

2λqeYΨ
− λπ

[
(1− z)2γζ

λC
+
γζ − γσ

1−z

λqeΨ

(
zb̄cb +

τQE

Y

)2
]
πt (23)

23In the online Appendix A.6 we show that the log-linearized resource constraint reads as: yt = (1− z)ct +

zcb,t +
(

τQE
Y

)
qet.
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The above trade-off criterion reflects a well-established result from the standard three-
equation New Keynesian model: after a cost-push shock that raises inflation, the central
bank must trigger a decline in the output gap to stabilize prices. The size of the trade-off
in equation (23), however, contains richer information than its counterpart in the three
equation New Keynesian model. Non-zero central bank bond holdings at the steady state
(b̄cb, QE ̸= 0) together with the presence of borrowers (z ̸= 0) make the inflation-output
gap trade-off heavier. This is captured by the second term in the bracket of the coefficient
on inflation in (23). At the same time, the induced decline in the output gap is alleviated by
the supply channel of the central bank balance sheet policy. As the supply channel strength-
ens (i.e. higher γσ

1−z
) the inflation-output gap trade-off is alleviated, partly mitigating the

induced output gap losses.

3.2 The case of de-anchored expectations

Before discussing the results of optimal policy under de-anchored expectations, it is useful
to note that when expectations are de-anchored, as described in (9), iterating backwards
allows us to write the expectations for a generic variable z as:

Ed
t zt+1 ≡ ωz

t = ḡ
∞∑
s=0

(1− ḡ)s zt−s−1 (24)

We apply thus this expression in the forward looking variables of the model. We assume
that the central bank has model-consistent expectations knowing the way the households
form expectations and the actual law of motion of the economy. Minimizing the welfare
loss under de-anchored expectations leads to the following targeting criteria:24

πt = − λC
λπγζ (1− z)

ct +
βλC ḡ

λπγζ (1− z)
Et

∞∑
s=0

βs+1 (1− ḡ)s ct+s+1 (25)

qet = − τQE

2λqeYΨ
− λπ
λqeΨ

(
γζ − γσ

1− z

)(
zb̄cb +

τQE

Y

)
πt −

λCb
b̄cbb̄FI

λqeΨ
θt

+
λC

λqeΨγζ(1− z)

(
γζ − γσ

1− z

)(
zb̄cb +

τQE

Y

)
βḡEt

∞∑
s=0

βs+1 (1− ḡ)s ct+s+1 (26)

24Complete derivations are provided in online Appendix B.3.

16



where the expectations operator refers to the expectations of the central bank. The criterion
in (25) shows the trade-off between inflation and the consumption of the parent. As in the
literature, this trade-off contains an intratemporal element, which is current consumption,
and an intertemporal one captured by the sum of the expected discounted consumption
of the parent.25 The intertemporal trade-off arises because of the expectations formation
mechanism. Clearly, when expectations are de-anchored, the central bank must consider
their backward looking nature when deciding upon its policy. That is, policy decisions have
a delayed impact on the economy due to slow adjustment in agents’ expectations. In the
absence of learning (i.e., ḡ = 0), the trade-off reverts to the optimal trade-off under optimal
discretion with rational expectations given in (13).

The second criterion in (26) describes the optimal setting of the central bank balance
sheet when expectations are de-anchored. Comparing this with its counterpart under ratio-
nal expectations in (14), the optimality condition (26) states that the central bank balance
sheet should react to contemporaneous inflation and to a credit shock in exactly the same
way as it does under rational expectations. The coefficient on contemporaneous inflation is
not affected by the expectation formation mechanism: it includes the interaction between
the supply and demand channel which limits the effectiveness of the balance sheet in re-
sponding to inflationary pressures. However, under de-anchored expectations, the central
bank balance sheet also depends on the expected discounted sum of the future consump-
tion of the parent. Hence expectations matter when deciding upon the balance sheet policy
in this case. But how important are they? A closer look at the coefficient on the expected
discounted sum of future parent’s consumption reveals that, first, it is a function of the
term capturing the interaction between the demand and the supply channel of balance
sheet policy (i.e. γζ − γσ

1−z
), second it is subject to heavy discounting and lastly depends

on the gain parameter, ḡ. All three factors tend to mitigate the impact of expectations on
the optimal balance sheet setting. Given that the demand and the supply channels of bal-
ance sheet policy work in opposite directions, a strong supply channel captured by a higher
γσ
1−z

tends to limit the impact of expectations on optimal balance sheet decisions. Similarly,
heavy discounting reinforces this attenuation. Finally, the low values of the gain parame-
ter, ḡ, advocated in the literature (see Carvalho et al., 2023; Eusepi et al., 2020) further

25In the literature (see Gaspar et al., 2010; Gáti, 2023; Molnár and Santoro, 2014, among others) the
intra- and intertermporal trade-off includes the output gap. These models however assume one representative
household.
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contribute to dampening the importance of expectations on the optimal balance sheet de-
cisions. Our quantitative analysis below corroborates this showing that the expectations
formation mechanism plays a limited role in the optimal balance sheet path. In this case as
well, when there is no learning (i.e. ḡ = 0) we are back to the optimality condition for the
central bank balance sheet with rational expectations, as summarized in (14).

Combining the intertemporal trade-off in (25) with the Phillips curve and exploiting the
backward looking behavior in expectations as described in (24) we can express equilibrium
inflation under optimal policy with de-anchored expectations as follows:26,27

πt =
ωπ(1− β)

ϱ̃
+ ωπ

θ

∞∑
s=0

(
βḡι

ςϱ̃

)s

θt−s + ωπ
cp

∞∑
s=0

(
βḡι

ςϱ̃

)s

cpt−s (27)

where
ϱ̃ = 1 + δ̃

(βḡ)2

ς

λπγζ(1− z)

λC
P̃

δ̃ =

[
γζ(1− z) +

(
γζ − γσ

1− z

)2(
zb̄cb +

τQE

Y

)2
λC

λqeΨγζ(1− z)

]
and

ι =
∞∑
s=0

[
(1− ḡ)s − δ̃βḡ

λπγζ(1− z)

λC

(
(1− ḡ)s +

s∏
j=0

(
1 + βj+2ḡ

)
βj+1 (1− ḡ)j+1

)]

Expression (27) above shows that equilibrium inflation under de-anchored expectations
depends not only on current, but also on past credit and cost-push shocks. This contrasts
starkly with the equilibrium inflation under RE in (16) which depends only on contempo-
raneous shocks. De-anchored expectations thus introduce persistence in the model that the
central bank needs to take into account. When there is no learning (i.e., ḡ = 0) we have
δ̃ = 0 and ρ̃ = 1, the equilibrium inflation coincides with that under optimal discretion
with RE in (16) and past shock realizations no longer play a role. Plugging the equilibrium

26A complete derivation is provided in the online Appendix B.3. As with rational expectations, we restrict
our focus to the case of zero shock persistence (ρθ, ρcp = 0) for tractability.

27In our derivations we have also used the fact that:

Et

∞∑
s=0

βs+1(1− ḡ)sct+s+1 = −βḡ
λπγζ(1− z)

λC

P̃tπt +

∞∑
s=0

(1− g)s +

s∏
j=0

(
1 + βj+2ḡ

)
βj+1 (1− ḡ)

j+1

πt−s−1


where P̃ =

∏∞
s=0

(
1 + βs+2ḡ

)
βs+1 (1− ḡ)

s+1 as we also show in Appendix B.3.

18



inflation (27) in (26) ,we obtain the equilibrium of central bank asset holdings. Proceed-
ing analogously to the case with RE, we then derive the corresponding equilibrium output
gap.28

We now examine how de-anchored expectations influence the optimal interest rate set-
ting. By substituting the solutions for the equilibrium inflation and central bank asset pur-
chases in the IS equation (1) and solving for the short-term rate, we obtain the optimal
interest rate rule under de-anchored expectations:

rst = rft + γσζ
λπ
λC

(1− z)
(
1 + (βḡ)2P̃

)
πt

+ σḡ
∞∑
s=0

[
(1− ḡ)s − β2ḡ

λπγζ(1− z)

λC

(
(1− g)s +

s∏
j=0

(
1 + βj+2ḡ

)
βj+1 (1− ḡ)j+1

)]
πt−s−1

(28)

Comparing the optimal interest rate rule above with its counterpart under RE in (22),
two observations stand out. First, the reaction to contemporaneous inflation is stronger
when expectations are de-anchored. Specifically, the reaction to contemporaneous inflation
obtained under rational expectations (i.e. γσζ λπ

λC
(1− z)) is now multiplied by 1 + (βḡ)2P̃

which is positive given P̃ > 0. As a result, for a given adverse cost-push shock that raises
inflation, the central bank must raise the short-term rate more than under RE. Second, de-
anchored expectations make the interest rate rule history dependent, as the sum of past
inflation realizations now enters the rule. The historical component amplifies the policy
response, as the central bank must now take into account the slow adjustment of expecta-
tions and their persistent impact on inflation dynamics. Note that when there is no learning
(i.e. ḡ = 0) the optimal interest rate rule above collapses to that under RE in (22). The
more aggressive interest rate response to inflation is determined by the way de-anchored
expectations affect the inflation-output gap trade-off. In fact, the sluggish adjustment of ex-
pectations deteriorates the transmission of monetary policy. Consequently, the central bank
has to tolerate larger output losses to achieve a given path for inflation. This mechanism is
formalized in Proposition 2.

28To save space we do not report the resulting expressions here.
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Proposition 2. De-anchored expectations result in a heavier inflation-output gap trade-off.
Proof. In online Appendix B.4.

The analysis of optimal policy thus shows that the central bank has to adjust its pol-
icy rate more aggressively following cost-push shocks when expectations are de-anchored,
compared to rational expectations, leading to a heavier inflation-output gap trade-off. At
the same time, its optimal decision on the balance sheet is only marginally affected by the
way expectations are formed. In the following section, we provide a quantitative evaluation
of the analytical findings above.

4 Optimal policy simulations

In this section, we turn to quantitative simulations. This section extends the analytical
findings presented in Section 3 in several relevant ways. In our simulations, we consider
persistent cost-push shocks, whereas in our analytical results above we considered i.i.d.

shocks for tractability. Second, we consider the scenario where changes in the policy rate
are costly - an element not accounted for in the analytical framework. Finally, we also study
a setting in which the economy is hit by both cost-push and credit shocks simultaneously, to
explore whether this raises the importance of balance sheet policy. In Section 4.1, we start
by studying the optimal policy path for the two policy instruments - the short-term policy
rate and the balance sheet - under scenarios of RE and de-anchored expectations. To be
complete, in the case of RE, we present the results under commitment and discretion, with
only the latter described in detail in Section 3. Subsequently, in Section 4.2 we analyze
optimal policy when fluctuations in the short-term rate are costly, while in Section 4.3 we
focus on optimal policy when the economy is subject to both cost-push and negative credit
shocks.

Details on simulations To replicate an environment with a high balance sheet that grad-
ually returns to the steady state (defined as 10% of annualized output), we introduce a
persistent positive QE shock.29 Specifically, we assume that central bank asset holdings fol-

29The argument of a positive balance sheet in the steady state has been recently emphasized in policy
discussions. See, e.g. 9 November 2023, Philip R. Lane, Member of the Executive Board of the ECB, at the
ECB Conference on Money Markets: “In particular, the appropriate level of central bank reserves can be expected
to remain much higher and be more volatile in this new steady state compared to the relatively-low levels that
prevailed before the global financial crisis (GFC).”
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low an AR(1) process initially, as specified in equation (7), and hence we shock this process.
This allows us to generate an environment of central bank asset holdings that lie above the
steady state. We also assume that the short-term rate is above the ZLB. In period 5, which
is four quarters after the initial QE shock, we introduce a one standard deviation persistent
price cost-push shock.30 We compute optimal policy in the different cases that we consider
from that period (i.e., period 5) onward.31 Before period 5, the short-term rate is assumed
to follow the interest rate rule specified in equation (6) and the central bank asset holdings
follow the AR(1) process that is shocked in period 1, as discussed above. We mainly focus
on the case in which both instruments, the short-term rate and the central bank asset hold-
ings, are set optimally from period 5 onward.32 In our results below, we show the impulse
responses to a cost-push shock under optimal policy, starting from the period in which this
shock hits, i.e. period 5, omitting the first 4 periods for clarity. Across all cases, the analysis
takes place in a context of balance sheet normalization—that is, a transition from elevated
central bank holdings back to their steady-state level.

Computational details We use a linear-quadratic approach to optimal policy, drawing on
de Groot et al. (2021), Hebden and Winkler (2021) and McKay and Wolf (2023), which al-
lows us to derive model-consistent forecast targeting criteria, both under de-anchored and
rational expectations. We provide more details in our online Appendix C.1. We leverage
on the first-order conditions of our optimal policy formulation, in which the constraints for
each variable are defined using the impulse response representation of the model. We sub-
sequently solve for the set of monetary policy shocks that satisfies the optimal policy prob-
lem.33 This means that we find the short-term interest rate and balance sheet sequences

30We deviate from the assumption of i.i.d. shocks taken in Section 3, instead considering a persistent cost-
push shock scenario, which aligns more closely with recent empirical observations during the inflation surge.
This results in further differences between rational and de-anchored expectations.

31Note that the choice of period 5 is arbitrary and that our policy prescriptions are not sensitive to it quali-
tatively. The implications are only quantitative.

32In our analysis, we also compare the welfare implications of using both instruments versus one of the two
only. In the case where only the short-term rate is set optimally, the central bank asset holdings are assumed to
continue following the AR(1) rule throughout the entire horizon. When only the central bank asset holdings
are set optimally (optimal QT), the short-term rate is assumed to continue following the interest rate rule
assumed in the initialization of our simulations, as specified above. In this case, the path of the central bank
asset holdings is decided optimally from period 5 onward. Before period 5, they simply follow the AR(1)
process that is shocked in period 1.

33Our computations benefit from the extensive work outlined in the COPPs toolkit developed by de Groot
et al. (2021), which provided valuable insights for solving our optimal policy problems. The toolkit can be
accessed here: https://github.com/COPPsToolkit/COPPs.
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Figure 1: Optimal monetary policy, in response to a cost-push shock
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Notes: Optimizing the balance sheet and the short-term interest rate, in response to a one standard deviation
persistent (ρcp = 0.8) cost-push shock. The dash-dotted blue lines depict optimal policy under commitment
with fully RE, while the red dotted lines show the case of discretion with fully RE. The green dashed lines are
optimal policy under fully de-anchored expectations. The circle-marked lines are the cases where only the
short-term rate is set optimally (Only IR). The lines without markers are the cases in which both instruments
are set optimally (QT and IR). To implement a transition from a high balance sheet level to a lower (i.e.
steady state) level, we first apply a positive QE shock. Then, four periods after this initial shock, we introduce
a cost-push shock. We show the impulse responses under optimal policy from this period onwards, when the
cost-push shock hits.

that implement our forecast targeting criteria.

4.1 Optimal policy in response to a persistent cost-push shock

In this subsection, we analyze how the central bank can set both of its monetary policy
instruments so as to minimize our model-consistent loss function, shown in Proposition 1,
in response to a persistent price cost-push shock that induces upward pressure on inflation.
Figure 1 plots the response of inflation, the output gap, the consumption of the parent and
the child along with the twomonetary policy instruments: the short-term policy rate and the
balance sheet. This is presented in a context in which both instruments are used tominimize
the loss function, in comparison to a scenario where only the short-term interest rate is set
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optimally, and the balance sheet follows the AR(1) process described in (7). Colored lines
with circle markers are the cases in which only the short-term interest rate is set in an
optimal way, while lines without markers represent scenarios where both instruments are
set optimally.

The dash-dotted blue lines depict the case of commitment under RE, while the dotted
red lines depict the case of discretion under RE. In these two cases, it appears that the short-
term interest rate is a more powerful tool to attain inflation stabilization, causing a milder
recession. Moreover, the path of the policy rate when both instruments are set optimally
remains slightly below the level when only the short-term interest rate is set optimally (lines
with circle markers). Consistent with this, the implementation of an optimal QT— reflected
in a decrease in the balance sheet — results in a moderate additional reduction in inflation,
although this comes at the cost of a significant decline in the output gap. Under de-anchored
expectations, depicted in dashed green lines, the effectiveness of the short-term interest rate
diminishes, where now the optimal rate hike is more pronounced and persistent. Yet, the
paths of inflation and the output gap remain broadly similar to those under RE. As shown
in (28), the optimal response of the short-term rate to inflation rises when expectations are
de-anchored. The central bank accounts in this case for the slow adjustment of inflation
expectations that keep inflation higher than otherwise, all else equal. Thus, to counteract
the pressure from expectations, it needs to hike more forcefully.

Specifically, the more aggressive hike incorporates not only the stronger reaction to infla-
tion contemporaneously, but also the reaction to elevated lagged inflation inherited due to
de-anchored expectations. In this context as well, the balance sheet remains a less effective
tool to fight inflationary pressures as it brings only limited gains on inflation stabilization
at the expense of substantially higher output losses. In fact, as (26) shows, the demand
and supply channels of balance sheet policy work in opposite directions, thereby reducing
its overall efficacy. As a result, stronger cuts in the balance sheet are necessary to achieve
a given decline in inflation. However, this comes at the expense of a deeper contraction
in economic activity. Specifically, from (15), the consumption of the child declines con-
siderably adding to the induced contraction.34 These conclusions hold both under RE and
de-anchored expectations, given that the expectations formation mechanism has a negligi-

34Recall that the child finances her consumption by issuing long-term bonds partly held by the central bank.
Hence, unwinding the central bank balance sheet reduces the consumption of the child.
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Figure 2: Optimal monetary policy, the role of expectations
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Notes: The dynamics of expectations, the long-term rate and the spread when both instruments are set
optimally, in response to a one standard deviation persistent (ρcp = 0.8) cost-push shock. The dash-dotted
blue lines depict optimal policy under commitment with fully RE. The green dashed lines are optimal policy
under fully de-anchored expectations. The solid black line shows the baseline QT trajectory where the central
bank balance sheet follows an AR(1) process. To implement a transition from a high balance sheet level to a
lower (i.e. steady state) level, we first apply a positive QE shock. Then, four periods after this initial shock, we
introduce a cost-push shock. We show the impulse responses under optimal policy from this period onwards,
when the cost-push shock hits.

ble effect on the optimal balance sheet path, as discussed in the previous section.
Overall, the description of Figure 1 allows us to emphasize the following main takeaways

about the optimal normalization policy following cost-push shocks in the case of rational or
de-anchored expectations. These findings quantify our analytical results in Section 3. First,
the interest rate stands out as the primary instrument for macroeconomic stabilization, due
to its higher efficacy in tempering inflationary pressures at a lower output cost. Consistent
with the literature, it proves highly powerful under RE and less so under de-anchored ex-
pectations. Second, in both cases of expectation formation, rational and de-anchored, QT
proves broadly ineffective, offering few additional gains in terms of inflation reduction while
imposing significant costs on real activity. Furthermore, while the interest rate trajectory
differs between the two expectation scenarios, the optimal balance sheet strategy remains
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largely unaffected by the type of expectations.

The role of expectations Figure 2 provides further details on the mechanism through
which optimal interest rate and balance sheet policy operates, emphasizing the role of ex-
pectations in shaping the effectiveness of the policy. It shows the dynamics of the balance
sheet, the long-term rate and the interest rate spread, as well as inflation, the output gap
and balance sheet expectations.35 When expectations are well-anchored, agents recognize
that the policy response would prevent inflation from staying persistently elevated but that
output will fall. In addition, agents’ beliefs track precisely the announced path by the cen-
tral bank, enabling the central bank to effectively manage long-term rates.36 This allows
the central bank to calibrate QT to the necessary degree, tightening long-term rates just
enough to complement the increase in the short-term rate and thus counteract the elevated
inflation.

In the case of de-anchored expectations, agents’ beliefs are more sluggish. They perceive
that inflation will remain elevated for an extended period, prompting the central bank to
raise the short-term policy rate to a higher level and maintain it for longer, as depicted
in Figure 1. The effect of de-anchored expectations on the path of expected inflation is
captured analytically by the sum of lagged inflation terms in the optimal interest rate rule
in (28) which forms a part of the stronger rate hike in this case, as explained above. On the
side of the balance sheet, agents do not factor in the central bank’s future QT path. This
results in a significant rise in long-term rates due to the misalignment between the actual
QT level and expectations about it. However, given the similar divergence in the short-term
rate, in both cases (RE and de-anchored expectations), the spread between the long-term
and the short-term interest rate does not vary markedly.

Importantly, in this case, the expectations formation of the private sector about the QT
trajectory is of relatively low importance. The intuition for this result is that, here, smaller
adjustments in the long-term rate are required when both instruments are set optimally,
since the short-term interest rate remains the primary tool for controlling inflation, irre-
spective of the prevailing expectations formation scenario. Consequently, any variations in
the long-term rate are a direct consequence of changes in QT expectations and the more
forceful short-term rate response rather than the central bank’s balance sheet actions per

35These variables are all explicitly part of the structural model outlined in Section 2.
36As detailed in online Appendix A, real long-term rates are a linear function of the expected changes in the

size of the balance sheet Etr
b
t+1 − Etπt+1 = σ [Etcb,t+1 − cb,t] = σ

[
b̄FI (Etθt+1 − θt) + b̄cb (Etqet+1 − qet)

].
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Table 2: Welfare costs

Commitment RE Discretion RE De-anchored exp.
Interest rate only, parent 0.198 0.315 0.236
Balance sheet only, parent 0.485 0.616 0.815
Interest rate only, child −0.670 −0.845 −0.687
Balance sheet only, child 0.281 0.674 0.623
Interest rate only, planner 0.017 0.050 0.034
Balance sheet only, planner 0.275 0.395 0.379

Notes: This table presents the welfare costs associated with using one instrument only, either the short-term
interest rate or the balance sheet, relative to using both instruments. The values of the welfare cost represent
the percentage increase in the steady-state consumption of the parent or the child, or the social planner, that
would make her indifferent between using both instruments optimally and setting only the interest rate or
the only balance sheet optimally.

se. The derivation of the optimal criterion in (26) revealed that the conflicting demand
and supply channels of balance sheet policy mitigate the importance of de-anchored ex-
pectations in the decision of the central bank about its balance sheet. Their importance is
further dampened due to discounting and a low constant gain parameter. Hence, it is the
interaction between the two channels of transmission of balance sheet policy and the slow
adjustment of expectations that makes the latter less relevant in the optimal decision of the
central bank.

The welfare costs of using one relative to both instruments We now turn to quanti-
fying the welfare costs of using one instrument (the short-term rate or the balance sheet)
relative to using both to minimize our model consistent loss function. We obtain the wel-
fare costs following Ravenna and Walsh (2011) and Mavromatis (2018), as the percentage
increase in steady-state consumption that would make the parent and/or child indifferent
between the optimal policy using one instrument only and the fully optimal policy where
both instruments are set optimally.

We define αIR
p as the welfare cost for the parent of not implementing the fully opti-

mal policy, measured as the percentage increase in steady-state consumption that would
make her indifferent between interest rate only optimal policy and the fully optimal pol-
icy. Similarly, αQT

p is the welfare cost for the parent of not implementing the fully optimal
policy, measured as the percentage increase in steady-state consumption that would make
her indifferent between balance sheet only optimal policy and the fully optimal policy. The
terms αIR

c and αQT
c denote the respective welfare costs for the child. Finally, αIR

w and αQT
w
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represent the respective welfare costs for the economy as a whole, derived from the social
welfare. Formally, αk

p, αk
c and αk

w, with k = {IR,QT} can be obtained from:

1

1− β
Ū
((
1 + αk

p

)
C̄, L̄

)
+ V k

t =
1

1− β
Ū
(
C̄, L̄

)
+ V fo

t (29)

1

1− βb
Ū
((
1 + αk

c

)
C̄b
)
+ V k
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1

1− βb
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(31)

with V k
t and V k

t,b the welfare of the parent and the child, respectively, in the case with only
one instrument being set optimally, while V fo

t and V fo
t,b are the welfare of the parent and

the child in the case that we consider as fully optimal, where both instruments are set
optimally.37 Similarly, W k

t and W fo
t is the aggregate welfare, derived in Proposition 1,

evaluated when only one instrument is set optimally and when both instruments are set
optimally, respectively.

Table 2 summarizes the welfare costs. The first row shows the welfare costs for the par-
ent of setting only the interest rate optimally, relative to the fully optimal policy involving
both instruments. A positive value implies that when the central bank follows the fully op-
timal policy this is preferable for the parent, compared to implementing a single instrument
optimally. The second row focuses on the scenario in which only the balance sheet is set
optimally, relative to the fully optimal policy. The subsequent rows summarize the respec-
tive results for the child, as well as for aggregate welfare (denoted as planner). The first
column is the case with RE and commitment, the second corresponds to the case with RE
and discretion, and the third to the case with de-anchored expectations.

When comparing the scenarios where both instruments are optimized to those where
only the interest rate is set optimally, Table 2 supports the findings illustrated in Figure 1.
From the perspective of the social planner, the benefits of using both instruments optimally
are small for the economy on aggregate. Specifically, setting only the interest rate optimally
would require a rise in steady state consumption of 0.05% on average under discretion with

37The welfare of the parent and the child, respectively, are derived from a second order approximation to
the utility function of each group, as summarized in the online Appendix B in equations (B.11) and (B.13).
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RE and of 0.034% under de-anchored expectations, respectively, in order for the economy
as a whole to be as well off as under the fully optimal policy. Focusing on the parent and the
child individually, we find that relying solely on the interest rate is suboptimal for the parent,
as her consumption — which depends on the real short-term interest rate — declines more
significantly. Conversely, the child would benefit more from using only the interest rate
optimally, as its consumption is directly linked to the path of the balance sheet, which in
this scenario follows the stable AR(1) process.

Finally, when comparing the use of both instruments to using only the balance sheet,
our results consistently indicate that the interest rate is the most effective instrument. Set-
ting only the balance sheet optimally results in significantly higher welfare costs, both on
aggregate and for each type of agent individually, compared to the fully optimal policy. This
finding holds true across all scenarios.38

4.2 Penalizing changes in the short-term rate

In the previous subsection, we established that the interest rate is the best-suited tool to curb
inflationary pressures caused by cost-push shocks and that reducing the size of the balance
sheet brings negligible improvements in aggregate welfare. Importantly, we showed that
this conclusion also holds under de-anchored expectations, albeit more aggressive hikes are
necessary in response to cost-push shocks. In practice, this might prove too costly as central
banks may need to adjust interest rates gradually or may want to avoid excess interest rate
volatility. To assess how this affects our policy prescriptions, we append to the loss function
derived in Proposition 1 the change in the short-term rate squared. The loss function thus
receives the following form:

Wt ≈ W − UCY

{
(1− z)

(
C

2

)
c2t + z

(
Cb

2

)
c2b,t +

Y ϵϕ

2(1− ϕβ)(1− ϕ)
π2
t

+
1

2
(υ̃pt )

2 + τ
Qbcb

Y
qet + τQbcb

Qbcb

2Y
qe2t + λr

(
rst − rst−1

)2} (32)

38In online Appendix C.3, we show that in scenarios in which the central bank balance sheet is the sole
policy tool set optimally, inflation is less well contained at the expense of a strong decrease in output.
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Figure 3: Optimal monetary policy, penalizing the change in interest rate
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Notes: Optimizing the balance sheet and the short-term interest rate, in response to a one standard deviation
persistent (ρcp = 0.8) cost-push shock, adding the change in the short-term interest rate in the loss function.
The weight on the change in the short-term rate is set to λr = 1. The solid blue lines depict optimal policy
under commitment with full RE, and the red dashed-dotted lines show the case of discretion with full RE.
The green dashed lines are optimal policy under fully de-anchored expectations. The solid black line shows
the baseline QT trajectory where QT follows an AR(1) process. The diamond-marked lines indicate the cases
with the change in the interest rate in the loss function. To implement a transition from a high balance sheet
level to a lower (i.e. steady state) level, we first apply a positive QE shock. Then, four periods after this initial
shock, we introduce a cost-push shock. We show the impulse responses under the optimal policy from this
period onwards when the cost-push shock hits.

with λr the weight associated with the change in the short-term rate.39 The results are
displayed in Figure 3, which plots the response of inflation, the output gap and the two
monetary policy instruments when both are set optimally. The colored lines marked with
diamonds plot optimal policy under RE (commitment and discretion) and de-anchored ex-
pectations when changes in the short-term rate are costly. For comparison, in the colored
lines without markers we show the responses from Figure 1, where an interest rate stabi-
lization objective is absent in the loss function.

Penalizing changes in the short-term rate has an impact on the conduct of optimal pol-
icy under de-anchored expectations, depicted with the green diamond-marked lines. In this
case, the central bank is more constrained in the hikes that it can implement, and that is
why the rise in the short-term rate is now dampened and hump-shaped compared to the

39We calibrate λr = 1 as in, e.g., Caravello et al. (2024).
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case where variations in the short-term rate are not penalized (green dashed lines without
markers). To compensate for this limitation, the central bank must initially shrink its bal-
ance sheet further. Given the costly short-term rate fluctuations, without the balance sheet
as an additional instrument at its disposal, inflation would have jumped even higher on
impact. In contrast, under rational expectations, penalizing interest rate variations leads to
negligible changes in the prescribed optimal policy paths of both instruments. The key con-
clusion is that, under de-anchored expectations when interest rate variations are penalized,
balance sheet management can contribute to macroeconomic stabilization and help avoid
large changes in the short-term rate. It does so through further balance sheet reduction
that tightens long-term rates and offsets some of the inflationary pressure.

4.3 Facing multiple shocks, the effects of credit disturbances

Balance sheet policies are also frequently used as a way to stabilize stressed financial mar-
kets. When addressing inflationary shocks during monetary policy normalization, policy-
makers may concurrently face shocks affecting the financial system.40 How should they
respond optimally to such a combination of disturbances? Does the nature of the shock and
the expectations formation mechanismmatter for the performance of each policy tool? This
section answers these questions by computing optimal monetary policy using both instru-
ments, under RE and de-anchored expectations. We assume that a substantial credit shock
occurs one year after the initial cost-push shock. The credit shock resembles a severe tight-
ening of financial intermediaries’ balance sheets, akin to a credit crunch. The responses
to this combination of shocks are represented by the colored lines marked by triangles in
Figure 4. For convenience, we also display the responses obtained in the previous sections
under a cost-push shock only, in colored lines without triangle markers.

Sims et al. (2023) show that the balance sheet is the best-suited tool to respond to
credit shocks. Our optimal policy results draw the same conclusion. Moreover, we show
that this conclusion is robust to the expectations formation mechanism. Compared to the
case with cost-push shocks only, we find that large credit disturbances can push the central
bank to slow down and even partially reverse its normalization effort, both under RE and
de-anchored expectations. As depicted in Figure 4, the balance sheet becomes the primary

40A recent example is the Federal Reserve’s intervention in the wake of the failure of Silicon Valley Bank
and Signature Bank.
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Figure 4: Optimal monetary policy, in response to a cosh-push and a credit shock
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Notes: Optimizing the balance sheet and the short-term interest rate, in response to a one standard deviation
persistent (ρcp = 0.8) cost-push shock, and a five standard deviation persistent (ρθ = 0.8) credit shock. The
solid blue lines depict optimal policy under commitment with fully RE, while the red dashed-dotted lines show
the case of discretion with fully RE. The vertical dashed line represents the period when the credit shock hits.
The colored lines without markers are optimal policy when facing a cost-push only, while the colored lines
with markers are when facing a cost-push and a credit shock. The solid black line shows the baseline QT
trajectory where QT follows an AR(1) process. To implement a transition from a high balance sheet level to
a lower (i.e. steady state) level, we first apply a positive QE shock. Then, four periods after this initial shock,
we introduce a cost-push shock. We add a credit shock eight periods after the initial QE shock. We show the
impulse responses under optimal policy from period 5 onwards, when the cost-push shock hits.

tool for responding to credit shocks. In contrast, when it comes to the optimal interest rate
path, optimal policy does not prescribe significant movement to it at the time the credit
shock hits.

The discussion above leads to the conclusion that the preference for the short-term rate
over the balance sheet is in fact shock dependent. Under de-anchored expectations the
optimal short-term rate path is slightly dampened relative to the case with a cost-push
shock only. Conversely, the central bank should halt balance sheet unwinding early and
temporarily overshoot its steady-state level to mitigate the credit shock. Similar patterns
hold under RE. Our results indicate that the optimal balance sheet path in response to credit
shocks achieves inflation and output gap outcomes nearly identical to those seen without
credit shocks, under both types of expectations.

In summary, we draw two noteworthy results. First, the primacy of the policy rate,

31



in terms of its ability to respond to shocks, depends on the nature of the shock. When
confrontedwith cost-push and credit shocks while setting both policy instruments optimally,
the central bank’s approach is to tailor each tool to respond to a specific shock: the short-
term policy rate is best suited to control inflationary pressures arising from a cost-push
shock, while the balance sheet is the appropriate tool to address a credit shock. Second,
this conclusion holds regardless of the expectations formation mechanism.

5 Conclusion

This paper is motivated by recent rate hikes implemented by major central banks, partly
in response to supply shocks, and by the ongoing unwinding of large central bank balance
sheets. We study optimal normalization policy in a framework in which agents’ expecta-
tions can deviate from rational expectations, and the central bank is faced with cost-push
shocks. Using an extended version of the four equation New Keynesian model of Sims
et al. (2023) that incorporates a resource cost for central bank bond holdings, we examine
whether balance sheet adjustments should play a more prominent role when expectations
are de-anchored.

Our first contribution is to show analytically that the interest rate remains the most ef-
fective tool for managing inflationary pressures arising from cost-push shocks, regardless
of the expectations formation process. While de-anchored expectations necessitate a more
forceful policy response, the interest rate continues to outperform balance sheet adjust-
ments. Moreover, expectations have only a limited influence on the optimal path of balance
sheet normalization in response to such supply shocks.

Optimal policy simulations further reinforce these findings. We show that the balance
sheet is less effective than the interest rate in controlling inflationary pressures and leads
to larger welfare losses. We also examine scenarios in which balance sheet adjustments be-
comemore important. Although the balance sheet plays only a secondary role in addressing
cost-push shocks, it gains relevance when interest rate adjustments are constrained and de-
anchored expectations would otherwise necessitate strong rate increases. Importantly, we
find that the balance sheet is more effective in responding to credit disturbances, regard-
less of how expectations are formed. This suggests that the optimal choice between policy
tools depends on the nature of the shock: the interest rate is better suited for managing
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inflationary supply shocks, while the balance sheet is more effective in addressing credit
shocks.

We acknowledge, however, that our conclusions are drawn from a rather simplified
framework and, as such, a richermodel featuring additional transmission channels is deemed
necessary. A notable limitation is that the model does not capture potential endogenous
market functioning issues that could be triggered by abrupt policy shifts. At the same time,
this paper represents a first attempt to incorporate state-of-the-art techniques to analyze
optimal normalization policy, involving both the short-term interest rate and the balance
sheet, in a model with bounded rationality.
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Online Appendix (Not for Publication)

A Extending the Sims et al. (2023) with a quadratic effi-

ciency cost

In this section, we present an extension of the original model by Sims et al. (2023) with a
quadratic efficiency cost.41

The model makes several simplifying assumptions to reduce to four equations in log-
linearized form. The quantitative implications of the four equation model are similar to
more complicated models.

The economy is populated by the following agents: two types of households (the parent
and the child, with respective shares of z and 1−z), a representative financial intermediary,
production firms, and a central bank. As detailed in Sims et al. (2023), the dynamics of the
child’s consumption in the model are in-line with the behavior of investment in Sims and
Wu (2021).

A.1 Households

A.1.1 Parent, or patient household

A representative parent maximizes its discounted lifetime utility from consumption, Ct and
labor Lt:

maxE0

∞∑
t=0

βt

[
C1−σ

t − 1

1− σ
− ψ

L1+χ
t

1 + χ

]
(A.1)

with σ > 0 is the inverse elasticity of intertemporal substitution, χ ≥ 0 is the inverse Frisch
elasticity, and ψ > 0 is a scaling parameter.

The parent’s budget constraint is:

PtCt + St ≤ WtLt +Rs
t−1St−1 + PtDt + PtD

FI
t + PtTt − PtX

b
t − PtX

FI
t (A.2)

in which Pt is the nominal price of consumption. The parent earns income from Wt the
41For simplicity, we present the model under rational expectations, as in the original paper by Sims et al.

(2023). The inclusion of boundedly rational expectations are discussed in the main text, in Section 2.
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nominal wage, Dt dividends from ownership in firms, DFI
t dividends from ownership in

financial intermediaries, and from lump-sum transfers, Tt, arising via central bank surplus
on asset holdings to be specified below. It can save in nominal short-term bonds St−1 which
pay a gross interest rateRs

t−1. Finally, it makes transfers to the childXb
t , as well as a transfer,

XFI
t to financial intermediaries, each period. The first-order conditions for Ct, Lt and St

are:
ψLχ

t = C−σ
t wt (A.3)

Λt−1,t = β

(
Ct

Ct−1

)−σ

(A.4)

1 = Rs
tEtΛt,t+1Π

−1
t+1 (A.5)

with Λt−1,t the stochastic discount factor of the parent, wt =
Wt

Pt
the real wage and Πt =

Pt

Pt−1

the gross inflation rate.

A.1.2 Child, or impatient household

The child does not supply labor, he thus only gets utility from consumption, Cb,t:

maxE0

∞∑
t=0

βt
b

[
C1−σ

b,t − 1

1− σ

]
(A.6)

It is less patient than the parent, i.e. βb < β.

The child can borrow/save using long-term bonds Bt. As in Woodford (2001), long-term
bonds are modeled as perpetuities with geometrically decaying coupon payments. Coupon
payments decay at rate denoted by κ ∈ [0, 1]. Issuing a bond in time t leads to payments
of 1, κ, κ2, . . . in the following periods. Using decaying coupon bonds allows to only keep
track of the total outstanding bonds, rather than individual issues. The new issuance of
long-term bonds is as follows:

NBt = Bt − κBt−1 (A.7)

Newly issued bonds trade at market price Qt, such that the total value of the bond portfolio
equals QtBt. The gross return on the long bond is defined by:

Rb
t =

1 + κQt

Qt−1

(A.8)
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The child has the following budget constraint:

PtCb,t +Bt−1 ≤ Qt (Bt − κBt−1) + PtX
b
t (A.9)

This means that the sum of the nominal value of consumption and coupon payments on
outstanding debt cannot exceed the value of new bond issuances plus the nominal value of
the transfer from the parent.

First-order conditions for the consumption of the child and the long-term bond give:

Λb,t−1,t = βb

(
Cb,t

Cb,t−1

)−σ

(A.10)

1 = EtΛb,t,t+1R
b
t+1Π

−1
t+1 (A.11)

A.2 Financial Intermediaries

Unlike Gertler and Karadi (2011), and Sims and Wu (2021), Sims et al. (2023) assume for
simplicity and tractability that the representative financial intermediary (FI) is born each
period and exits the industry in the subsequent period. It receives an exogenous amount of
net worth from the parent household, PtX

FI
t :

PtX
FI
t = PtX̄

FI + κQtB
FI
t−1 (A.12)

It consists of two components: fixed amount of new equity X̄FI , and outstanding long-
bonds inherited from past intermediaries κQtB

FI
t−1.

The FI has the following balance sheet condition:

QtB
FI
t +REFI

t = SFI
t + PtX

FI
t (A.13)

The left-hand side of this equation corresponds to the assets of the FI, i.e. long-term lendings
to the child QtB

FI
t and central bank’s reserves REFI

t . The right-hand side, the liabilities, is
comprised of short-term deposits from the parent SFI

t and the transfer PtX
FI
t .

The FI pays interest, Rs
t , on short-term debt. It earns interest, Rre

t , on reserves, as well
as a return on long-term bonds Rb

t+1. Upon exiting after period t, the FI’s dividend to the
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parent household are therefore equal to:

Pt+1D
FI
t+1 =

(
Rb

t+1 −Rs
t

)
QtB

FI
t + (Rre

t −Rs
t )RE

FI
t +Rs

tPtX
FI
t (A.14)

The FI maximizes expected dividends, which are discounted by the nominal stochastic dis-
count factor of the parent Λt,t+1, subject to a risk-weighted leverage constraint in which
long-term bonds receive a risk weight of unity, while reserves on account with the central
bank have a risk weight of zero:

QtB
FI
t ≤ ΘtPtX̄

FI (A.15)

This states that the value of the long-term loan to the child cannot be larger than a multiple
Θt of the value of its equity. Θt is viewed as a credit shock, and obeys an AR(1) process.

The first-order conditions of the FI with respect to its choice variables, the quantity of long
bonds and reserves are:

EtΛt,t+1Π
−1
t+1

(
Rb

t+1 −Rs
t

)
= Ωt (A.16)

EtΛt,t+1Π
−1
t+1 (R

re
t −Rs

t ) = 0 (A.17)

with Ωt the multiplier on the leverage constraint. The binding constraint, i.e. Ωt > 0,
generates excess returns between the expected return on long bonds and the cost of funds.

A.3 Production

The production side of the economy consists of three sectors: final output, retail output, and
wholesale output. There is a representative final good firm and representative wholesale
producer. There is a continuum of retailers, indexed by f ∈ [0, 1].

Final output:

Each final output firm faces a downward-sloping demand function given by:

Yt(f) =

(
Pt(f)

Pt

)−ϵ

Yt (A.18)

with ϵ > 1 the elasticity of substitution.
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This gives rise to an aggregate price index:

Pt =

[∫ 1

0

Pt(f)
1−ϵdf

] 1
1−ϵ

(A.19)

Retail output:

Retailers purchase wholesale output at price Pm,t, which can be viewed as nominal marginal
costs and repackage it for sale at Pt(f). Retailers are subject to a Calvo (1983) pricing
friction. Each period, there is a probability 1 − ϕ that a retailer adjusts its price, with
ϕ ∈ [0, 1].

When a retailer does adjust its prices, it picks a price to maximize the present value
of expected profits, discounted by the stochastic discount factor of the parent household.
Optimization results in an optimal reset price, P∗,t, that is common across updating retailers.
Denote real marginal costs as pm,t =

Pm,t

Pt
, the optimal reset price then satisfies:

P∗,t =
ϵ

ϵ− 1

X1,t

X2,t

(A.20)

X1,t = P ϵ
t pm,tYt + ϕEtΛt,t+1X1,t+1 (A.21)

X2,t = P ϵ−1
t Yt + ϕEtΛt,t+1X2,t+1 (A.22)

Wholesale output:

The wholesale firm produces output Ym,t using a production function which takes labor as
input:

Ym,t = AtLt (A.23)

with At an exogenous productivity disturbance following a known stochastic process.

Real wages wt =
Wt

Pt
are determined by:

wt = pm,tAt (A.24)
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A.4 The central bank

The central bank has two instruments, namely the policy rate Rs
t , and its portfolio of long-

term bonds issued by the child Bcb
t . The policy rate evolves according to a simple Taylor

rule subject to the ZLB:

lnRs
t = max [0 ; ϕπ (lnΠt − lnΠ) + ϕx (lnYt − lnY ∗

t ) + srεr,t] (A.25)

The central bank finances its portfolio of long-term bonds through the creation of reserves
REt. Its balance sheet condition is:

QtB
cb
t = REt (A.26)

QE is defined as the real value of the central bank’s bond portfolio:42

QEt = Qtb
cb
t (A.27)

where bcbt =
Bcb

t

Pt
.

In their original specification, Sims et al. (2023) assume that QE is costless. We follow
Gertler and Karadi (2011), Karadi and Nakov (2021) and Kabaca et al. (2023) and assume
that the central bank pays an efficiency cost, Γt, whenever it conducts QE or QT. In this
case, the central bank earns a surplus on its asset holdings which is transferred lump-sum
to the parent household and takes the following form, in real terms:

Tt =
Rb

tQt−1

πt
bcbt−1 −

Rt−1

πt
ret−1 − Γt (A.28)

where ret = REt/Pt, with

Γt =
τ

2

(
Qtb

cb
t

)2 (A.29)

As in Kabaca et al. (2023), these costs reflect the notion that the central bank faces sev-
eral distortions, such as political costs and other implementation constraints (e.g., costs
of maintaining a large balance sheet or identifying preferred government sector markets)

42In our baseline calibration of the model, the QE policy follows a simple AR(1) process.
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when purchasing or selling long-term government bonds. Given its quadratic structure,
both QE and QT incur costs to the central bank. We think of QT as active and passive, in
the sense that it coincides with active selling of central bank asset holdings and with no
re-investments of the proceeds of maturing bonds.

A.5 Aggregate conditions

Market clearing requires the following conditions:

REt = REFI
t (A.30)

St = SFI
t (A.31)

St = SFI
t (A.32)

Bt = BFI
t +Bcb

t (A.33)

Ytv
p
t = AtLt (A.34)

A key feature of Sims et al. (2023) is that they assume that the transfer from parent to
child,Xb

t , is time-varying, but that neither the parent nor the child behaves as though it can
influence the value:

PtX
b
t = (1 + κQt)Bt−1 (A.35)

This assumption, referred to as the "full-bailout"43 implies that, even though the child solves
a dynamic problem and has a forward-looking Euler equation, its consumption is, in fact,
static:

PtCb,t = QtBt (A.36)

This assumption by Sims et al. (2023) on the parent-child transfer allows one to elimi-
nate a state variable and simplifies the system to four equations, although it is not crucial
for the qualitative or quantitative properties of the model.

In our model, due to the introduction of the QE cost, the aggregate resource constraint
of the economy changes. Considering the budget constraint of the parent and plugging in

43At each period, the parent pays off the child’s debt. Sims et al. (2023) provide evidence that relaxing this
assumption does not fundamentally alter the behavior of the model in response to shocks.
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dividends from firm financial intermediary ownership as well as the expression for nominal
remittances (A.28), we obtain:

PtCt = RS
t−1St−1 + PtYt +

(
Rb

t −RS
t−1

)
Qt−1B

FI
t−1 +

(
RRE

t−1 −RS
t−1

)
REFI

t−1

+RS
t−1Pt−1X

FI
t−1 +Rb

tQt−1B
CB
t−1 −RRE

t−1REt−1 − PtΓt − (1 + κQt)Bt−1

−QtB
FI
t −REFI

t (A.37)

Using the definition of the balance sheet of the financial intermediary (A.13), we can
substitute out for Pt−1X

FI
t−1 in (A.37) above and then simplify to get:

PtCt = PtYt +Rb
tQt−1Bt−1 − (1 + κQt)Bt−1 − PtΓt −QtB

FI
t −REFI

t (A.38)

Accounting for the fact that long-term rates are defined as Rb
t =

1+κQt

Qt−1
and using the bonds

market clearing condition (A.33), the balance sheet of the central bank (A.26) and the fact
that the full bailout condition (A.36), we arrive at:

Ct + Cb,t = Yt − Γt (A.39)

Using the definition of for QEt in (A.27), we may rewrite the efficiency cost expression for
Γt as follows:

Γt =
τ

2
QE2

t (A.40)

This allows us to rewrite the resource constraint (A.39) as follows:

Yt = Ct + Cb,t +
τ

2
QE2

t (A.41)

At and Θt obey conventional log AR(1) processes. Potential output Y∗,t is defined as the
equilibrium level of output consistent with price flexibility (i.e. ϕ = 0) and where the credit
shock is constant, i.e. Θt = 0. The natural rate of interest, Rf

t , is the gross real short-term
interest rate consistent with this level of output. Xt =

Yt

Y∗,t
is the output gap.
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A.6 The full log-linearized model

We write below all log-linearized conditions of the model, under rational expectations. The
majority of these equations are similar to Sims et al. (2023), with the exception of the
introduction of the QE cost. Lowercase variables denote log, i.e. percentage change, devi-
ations from steady state. We use a “hat” when the corresponding level variable is already
lower-case. Variables without a time subscript denote non-stochastic steady state values.
The model is linearized around a steady state with zero trend inflation (i.e. Π = 1) where
the leverage constraint on intermediaries binds.

χlt = −σct + ŵt (A.42)

λt−1,t = −σ (ct − ct−1) (A.43)

0 = Etλt,t+1 + rst − Etπt+1 (A.44)

λb,t−1,t = −σ (cb,t − cb,t−1) (A.45)

rbt =
κ

Rb
qt − qt−1 (A.46)

0 = Etλb,t,t+1 + Etr
b
t+1 − Etπt+1 (A.47)

qt + b̂FI
t = θt (A.48)[

QbFI(1− κ)
]
qt +QbFI b̂FI

t − κQbFI b̂FI
t−1 + κQbFIπt + re · r̂et = s · ŝt (A.49)

Etλt,t+1 − Etπt+1 +
Rb

sp
Etr

b
t+1 −

Rs

sp
rst = ωt (A.50)

rret = rst (A.51)

p̂∗,t = x̂1,t − x̂2,t (A.52)

x̂1,t = (1− ϕβ)p̂m,t + (1− ϕβ)yt + ϕβEtλt,t+1 + ϵϕβEtπt+1 + ϕβEtx̂1,t+1 (A.53)

x̂2,t = (1− ϕβ)yt + ϕβEtλt,t+1 + (ϵ− 1)ϕβEtπt+1 + ϕβEtx̂2,t+1 (A.54)

ŵt = p̂m,t + at (A.55)

(1− z)ct + zcb,t +

(
τQE

Y

)
qet = yt (A.56)
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v̂pt + yt = at + lt (A.57)

v̂pt = 0 (A.58)

πt =
1− ϕ

ϕ
p̂∗,t (A.59)

qt + b̂cbt = r̂et (A.60)

b̂t =
bFI

b
b̂FI
t +

bcb

b
b̂cbt (A.61)

cb,t = qt + b̂t (A.62)

at = ρaat−1 + saεa,t (A.63)

θt = ρθθt−1 + sθεθ,t (A.64)

rft = ρfr
f
t−1 + sfεf,t (A.65)

cpt = ρcpcpt−1 + scpεcp,t (A.66)

qet = ρqqet−1 + sqεq,t (A.67)

rst = max [0 ;ϕππt + ϕxxt + srεr,t] (A.68)

qet = r̂et (A.69)

xt = yt − y∗t (A.70)

A.7 Updated IS and Phillips Curve Equations

In this subsection we reduce the system of log-linearized equations to get to the four equa-
tions presented in the main text.

To obtain the IS curve, we start by combining first-order conditions on consumption of each
type of households and interest rates (A.43)-(A.45) and (A.47) with the aggregate resource
constraint (A.56):

yt = Etyt+1 −
1− z

σ
(rst − Etπt+1)−

z

σ

(
Etr

b
t+1 − Etπt+1

)
−
(
τQE

Y

)
[Etqet+1 − qet] (A.71)
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Combining (A.60)-(A.62) with (A.69) and the binding leverage constraint (A.48) allows us
to write the consumption of the child as a function of credit shocks and QE:

cb,t =
bFI

b

(
qt + b̂FI

t

)
+
bcb

b
qet = b̄FIθt + b̄cbqet (A.72)

with b̄FI = bFI/b and b̄cb = bcb/b the steady state fraction of total bonds held by financial
intermediaries and the central bank, respectively.

Using the child’s first-order condition we get:

Etr
b
t+1 − Etπt+1 = σ [Etcb,t+1 − cb,t] = σ

[
b̄FI (Etθt+1 − θt) + b̄cb (Etqet+1 − qet)

] (A.73)

Combining these two equations we get:

yt = Etyt+1 −
1− z

σ
(rst − Etπt+1)−

(
zb̄cb +

τQE

Y

)
(Etqet+1 − qet)

− zb̄FI (Etθt+1 − θt) (A.74)

This equation can also be written as a function of the interest rate spread:

yt = Etyt+1 −
1

σ
(rst − Etπt+1)−

z

σ

(
Etr

b
t+1 − rst

)
−
(
τQE

Y

)
[qet+1 − qet] (A.75)

Define the hypothetical natural rate of output, y∗t , as the level of output consistent with
flexible prices and no credit market shocks. That is, y∗t is the level of output consistent with
p̂m,t = θt = 0, or:

y∗t =
(1 + χ)(1− z)

χ(1− z) + σ
at (A.76)

The natural rate of interest, rft , is the real rate consistent with the IS equation holding at
the natural rate of output absent credit shocks. It can be expressed as:

rft =
σ

1− z

(
Ety

∗
t+1 − y∗t

)
=
σ (ρA − 1)

1− z
y∗t (A.77)
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Using (A.70), this allows to express the IS curve as a function of the output gap:

xt = Etxt+1 −
1− z

σ

(
rst − Etπt+1 − rft

)
−
(
zb̄cb +

τQE

Y

)
(Etqet+1 − qet)

− zb̄FI (Etθt+1 − θt) (A.78)

The Phillips curve can be derived as follows. First, we can combine (A.52)-(A.54) such as to
have an equation linking prices and marginal costs:

πt = γp̂m,t + βEtπt+1 (A.79)

with γ = (1−ϕ)(1−ϕβ)
ϕ

. Combining (A.42) with (A.55) and (A.57), taking note of the fact that
v̂pt = 0 around a zero inflation steady state, gives an expression for the marginal costs:

p̂m,t = χyt − (1 + χ)at + σct (A.80)

Using the aggregate resource constraint (A.56) allows us to write this as:

p̂m,t =
χ(1− z) + σ

1− z
yt − (1 + χ)at −

σz

1− z
cb,t −

σ

(1− z)

τQE

Y
qet (A.81)

Using the definition for cbt derived in (A.72):

p̂m,t =
χ(1− z) + σ

1− z
yt − (1 + χ)at −

σz

1− z

[
b̄FIθt + b̄cbqet

]
− σ

(1− z)

τQE

Y
qet (A.82)

This can be expressed as a function of output gap, using (A.76):

p̂m,t =
χ(1− z) + σ

1− z
xt −

σz

1− z

[
b̄FIθt + b̄cbqet

]
− σ

(1− z)

τQE

Y
qet (A.83)

Plugging this equation into (A.79), and defining ζ = χ(1−z)+σ
1−z

gives the Phillips curve in this
four equation model.

πt = βEtπt+1 + γζxt −
γσ

1− z

(
zb̄cb +

τQE

Y

)
qet −

γσz

1− z
b̄FIθt + cpt (A.84)

To this equation we add an ad-hoc price cost-push shock cpt.
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B Supplementary analytical details

This appendix provides additional details to complement Section 3. We derive first the wel-
fare criterion summarized in Proposition 1. Subsequently, we derive optimal discretionary
normalization policy under rational expectations (RE) away from the zero lower bound.
We conclude this section by deriving optimal normalization policy under de-anchored ex-
pectations.

B.1 Derivation of the welfare criterion

We define aggregate welfare as the sum of the utility functions of the parent and the child:

Wt = Vt + Vb,t (B.1)

We follow the approach of Rotemberg and Woodford (1997) and take a second-order
approximation of the utility function of the parent and the child, respectively.

A second-order approximation of the utility function of the child reads as follows:

Vb,t = Vb + UCb
Cb

(
cb,t +

1

2
(1 +

UCbCb
Cb

UCb

)c2b,t

)
(B.2)

A second-order approximation of the utility function of the parent reads as follows:

Vt = V + UCC

(
ct +

1

2
(1 +

UCCC

UC

)c2t

)
− ULL

(
lt +

1

2
(1 +

ULLL

UL

)l2t

)
(B.3)

where UCb
= UC = C−σ, UCbCb

= UCC = −σC−σ−1, UL = Lχ and ULL = χLχ−1. Log-
linearizing the aggregate production function, we get that yt = at− υ̂pt + lt.44 Taking instead
a second-order Taylor approximation of the production function around the zero steady-
state inflation, we receive:

lt = yt +
Y

2
y2t +

1

2
(υ̂pt )

2 − L

2
l2t + t.i.p. (B.4)

where t.i.p. stands for terms irrelevant of policy, such as the productivity shock in this case.
Note that in this case υ̂pt = log(υpt )− log(υp). From ch. 6 of Woodford (2003) we can write,

44Note that we are log-linearizing around the zero steady-state inflation, which implies that price dispersion
is irrelevant up to first order.
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under a Calvo price setting mechanism:

y2t = ϵvar(p∗,t) (B.5)

and, in turn, the variance of optimal relative prices reads as follows:

∞∑
t=0

βtvar(log(p∗,t)) =
1

1− ϕβ

∞∑
t=0

βt

[
ϕ

1− ϕ
π2
t

]
+ t.i.p.+O

(
||ξ3||

) (B.6)

Substituting (B.4) in (B.3), we receive:

Vt = V + UCC

(
ct +

1

2
(1− σ)c2t

)
− ULL

(
yt +

Y

2
y2t +

1

2
(υ̃pt )

2 − L

2
l2t

)
− 1

2
ULL(1 + χ)l2t + t.i.p. (B.7)

Note that from equations (B.5) and (B.6), we have:

y2t =
ϵϕ

(1− ϕβ)(1− ϕ)
π2
t + t.i.p.+O

(
||ξ3||

) (B.8)

where O (||ξ3||) captures terms of order higher than two. Substituting the above expression
in (B.7), we receive:

Vt = V + UCC

(
ct +

1

2
(1− σ)c2t

)
− ULL

Y ϵϕ

2(1− ϕβ)(1− ϕ)
π2
t

− ULL

(
yt +

1

2
(υ̃pt )

2 − L

2
l2t

)
− 1

2
ULL(1 + χ)l2t + t.i.p.+O

(
||ξ3||

) (B.9)

Note that from the first order condition of the parent’s problem with respect to labor supply
(and after normalizing steady state real wage to one), we have that ψUL = UC . We may
thus rewrite (B.9) as follows:

Vt = V + UCY

{(
C

Y
ct +

C

2Y
(1− σ)c2t

)
− Y ϵϕ

2ψ(1− ϕβ)(1− ϕ)
π2
t

− 1

ψ

(
yt +

1

2
(υ̃pt )

2 − L

2
y2t

)
− 1

2ψ
(1 + χ)y2t

}
+ t.i.p.+O

(
||ξ3||

) (B.10)

where we have used the square of the expression (B.4) to substitute out for l2t . We now
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normalize steady state output to one. Gathering terms and setting ψ = 1, we can write:

Vt = V + UCY

{(
C

Y
ct +

C

2Y
(1− σ)c2t

)
− Y ϵϕ

2(1− ϕβ)(1− ϕ)
π2
t

− yt −
1

2
(υ̃pt )

2 − χ

2
y2t

}
+ t.i.p.+O

(
||ξ3||

) (B.11)

Taking a second order approximation of the resource constraint (A.41), we can write:

yt −
C

Y
ct −

Cb

Y
cb,t = −Y

2
y2t + C

C

2Y
c2t + Cb

Cb

2Y
c2b,t + τ

bcb

Y
qet + bcbE

τbcb

2Y
qe2t (B.12)

Returning now to the welfare of the child, we can rewrite it as follows, using the marginal
utility of consumption and the marginal disutility from labor at the steady state:

Vb,t = Vb + UCb
Y

(
Cb

Y
cb,t +

Cb

2Y
(1− σ)c2b,t

)
(B.13)

Assuming that at the steady state UC = UCb
, and plugging (B.11) and (B.13) in (B.1), we

receive:

Wt = W − UCY

{
C

Y

(
C − 1 + σ

2

)
c2t +

Cb

Y

(
Cb − 1 + σ

2

)
c2b,t +

Y ϵϕ

2(1− ϕβ)(1− ϕ)
π2
t

+
χ− Y

2
y2t +

1

2
(υ̃pt )

2 + τ
Qbcb

Y
qet + τQbcb

Qbcb

2Y
qe2t

}
+ t.i.p.+O

(
||ξ3||

) (B.14)

Clearly, by using the calibration of Sims et al. (2023), where σ = χ = 1 and accounting for
a normalization of output at the steady state, Y = 1, we can simplify further to get:

Wt = W − UCY

{
C

Y

(
C

2

)
c2t +

Cb

Y

(
Cb

2

)
c2b,t +

Y ϵϕ

2(1− ϕβ)(1− ϕ)
π2
t

+
1

2
(υ̃pt )

2 + τ
Qbcb

Y
qet + τQbcb

Qbcb

2Y
qe2t

}
+ t.i.p.+O

(
||ξ3||

) (B.15)

Note that the linear term, qet, in the loss function above arises because in our extension of
the model to allow for quadratic efficiency costs of QE/QT, the steady state is inefficient,
since QE ̸= 0 at the steady state. As shown in Benigno and Woodford (2005), linear terms
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show up in the welfare criterion. Note also that C/Y = 1− z and Cb/Y = z.
Following the calibration described in Section 2 and taking ϕ = 0.75 and ϵ = 11 as in

Sims et al. (2023), we get the weights in the loss function:

λC =
C

Y

(
C

2

)
= 0.67

(
0.67

2

)
= 0.2244

λCb
=
Cb

Y

(
Cb

2

)
= 0.33

(
0.33

2

)
= 0.0545

λπ =
Y ϵϕ

2(1− ϕβ)(1− ϕ)
= 65.0246

λqe = τQbcb
Qbcb

2Y
= 5e− 05

B.2 Optimal Discretionary Normalization Policy under Rational Expec-

tations

Given that the model is purely forward-looking under rational expectations, the central
bank minimizes the welfare loss (B.15) subject to the Phillips curve and equation (A.72)
that describes the dynamics of the consumption of the child conditional of full bailout from
the parent taking expectations as given:

min
πt,ct,cb,t,qet

[
− UCY

{
λCc

2
t + λCb

c2b,t + λππ
2
t +

1

2
(υ̃pt )

2 + τ
Qbcb

Y
qet + λqeqe

2
t

}

− ξπ

(
πt − γζxt +

γσ

1− z

(
zb̄cb +

τQE

Y

)
qet +

γσz

1− z
b̄FIθt − cpt

)
− ξcb

(
cb,t − b̄FIθt − b̄cbqet

) ]
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The first-order conditions read as follows:

ct : −2UCY λCct + γζ(1− z)ξπ = 0

(B.16)
cb,t : −2UCY λCb

cb,t + γζzξπ − ξcb = 0

(B.17)
πt : −2UCY λππt − ξπ = 0

(B.18)

qet : −UCY τ
QE

Y
− 2UCY λqeqet + ξπ

(
γζτ

QE

Y
− γσ

1− z

(
zb̄cb +

τQE

Y

))
+ ξcb b̄

cb = 0

(B.19)

where we have exploited the resource constraint (A.56) to substitute out for xt in the Phillips
curve. When taking thus the first-order derivatives with respect to the central bank balance
sheet, qet, the effect of the latter on the output gap has been taken into account. This
explains the presence of coefficient ζ in the first-order condition with respect to qet. This
formulation allows us to reduce the number of Lagrange multipliers.

Combining the FOC (B.16) and (B.18) we arrive at the first trade-off that the central
bank is facing:

ct = −γζ (1− z)
λπ
λC

πt (B.20)

Solving for ξcb in (B.17) and plugging the resulting expression together with (B.18) in
(B.19) we arrive at the relationship describing the optimal setting of the central bank bal-
ance sheet as a function of inflation:

qet = − τQE

2λqeY
− λπ
λqe

[(
γζ − γσ

1− z

)(
zb̄cb +

τQE

Y

)]
πt − b̄cb

λCb

λqe
cb,t (B.21)

Plugging expression (A.72) in (B.21) to substitute out for cb,t and gathering terms we arrive
at the following expression for the optimal central balance sheet, as reported in the text:

qet = − τQE

2λqeYΨ
− λπ
λqeΨ

[(
γζ − γσ

1− z

)(
zb̄cb +

τQE

Y

)]
πt − b̄cb

λCb

λqeΨ
b̄FIθt (B.22)
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where Ψ = 1 + (b̄cb)2
λCb

λqe
. Plugging (B.20), (A.72) in the resource constraint (A.56) yields:

yt = − (1− z)2 γζ
λπ
λC
πt + zb̄FIθt +

(
zb̄cb +

τQE

Y

)
qet (B.23)

Inserting the above expression in the Phillips curve to substitute out for the output gap,
we obtain:45

πt = βEtπt+1 − (γζ)2 (1− z)2
λπ
λC
πt +

(
γζ − γσ

1− z

)(
zb̄cb +

τQE

Y

)
qet

+

(
γζ − γσ

1− z

)
zb̄FIθt + cpt (B.24)

Using (B.22) to substitute for qet above, iterating forward and assuming zero persistence
in the credit and cost-push shocks (i.e. ρθ, ρcp = 0) we receive the equilibrium inflation
under optimal discretion with rational expectations:

πt = −ωπ + ωπ
θ θt + ωπ

cpcpt (B.25)

where:

ωπ = − τQE

2λqeYΨς (1− β)
ϖ

ωπ
θ =

[(
γζ − γσ

1− z

)
z − b̄cb

λCb
ϖ

λqeΨ

]
b̄FI

ς

ωπ
cp =

1

ς

ϖ =

(
γζ − γσ

1− z

)(
zb̄cb +

τQE

Y

)
ς = 1 + (γζ(1− z))2

λπ
λC

+
λπ
λqeΨ

ϖ2

Plugging (B.25) in (B.22), we receive the equilibrium central bank balance sheet under
45Given the definition of the output gap in (A.70), the definition of the flexible price level of output in

(A.76) and the fact that we abstract from productivity shocks, it follows that xt = yt.
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optimal discretion:
qet = ωqe − ωqe

θ θt − ωqe
cpcpt (B.26)

where:

ωqe =
τQE

2λqeYΨ

[
λπ
λqeΨ

ϖ2

ς (1− β)
− 1

]
(B.27)

ωqe
θ =

λπ
λqeΨ

ϖ

[(
γζ − γσ

1− z

)
z − b̄cb

λCb
ϖ

λqeΨ

]
b̄FI

ς
+ b̄cb

λCb

λqeΨ
b̄FI (B.28)

ωqe
cp =

λπ
λqeΨ

ϖ

ς
(B.29)

Finally, combining the FOC (B.20) with (A.72), (B.25), (B.26) and the resource con-
straint (A.56) we arrive at the equilibrium output gap under optimal discretionary policy:

xt = ωx − ωx
θ θt − ωx

cpcpt (B.30)

where:

ωx = − (1− z)2 γζ
λπ
λC
ωπ +

(
zb̄cb+

τQE

Y

)
ωqe (B.31)

ωx
θ =

[
(1− z)2 γζ

λπ
λC
ωπ
θ +

(
zb̄cb+

τQE

Y

)
ωqe
θ

]
zb̄FI (B.32)

ωx
cp = (1− z)2 γζ

λπ
λC
ωπ
cp +

(
zb̄cb+

τQE

Y

)
ωqe
cp (B.33)

Plugging the resource constraint in the IS equation and using (B.20) to (A.72) to sub-
stitute for ct and cb,t, and considering the case of zero shock persistence (ρθ, ρcp = 0), we
arrive at the optimal interest rate rule that is reported in equation (22) in the main text:

rst = rft + γσζ (1− z)
λπ
λC
πt (B.34)

To derive the equilibrium interest rate consistent with optimal discretionary policy, one
has to only plug in equilibrium inflation (B.25) in the optimal interest rate rule above, so
that the interest rate can be expressed as a function of the cost-push and the credit shocks.

56



B.3 Optimal Normalization Policy under De-Anchored Expectations

Before formulating the minimization problem of the central bank in the presence of de-
anchored expectations it is useful to work on inflation expectations. Exploiting the law of
motion of de-anchored expectations (9), and iterating backwards we may write the law of
motion of inflation expectations as follows:

ωπ
t ≈ ḡ

∞∑
s=0

(1− ḡ)s πt−s−1 (B.35)

The Phillips curve under de-anchored expectations thus reads as follows:

πt = βωπ
t + γζxt −

γσ

1− z

(
zb̄cb +

τQE

Y

)
qet −

γσz

1− z
b̄FIθt + cpt (B.36)

where we can plug in expression (B.35) for inflation expectations. The minimization prob-
lem of the central bank under de-anchored expectations reads as follows:46

min
πt,ct,cb,t,qet

Et

∞∑
t=1

[
− UCY

{
λCc

2
t + λCb

c2b,t + λππ
2
t +

1

2
(υ̃pt )

2 + τ
Qbcb

Y
qet + λqeqe

2
t

}

− ξπ,t

(
πt − β

(
ḡ

∞∑
s=0

(1− ḡ)s πt−s−1

)
− γζxt +

γσ

1− z

(
zb̄cb +

τQE

Y

)
qet +

γσz

1− z
b̄FIθt − cpt

)

− ξcb,t
(
cb,t − b̄FIθt − b̄cbqet

) ]
46Note that the expectation operator in the minimization problem of the central bank corresponds to the

expectations of the central bank itself. As mentioned in the main body of the text, we have assumed that the
central bank is rational and has full knowledge of the actual law of motion of the economy and the way agents
form their expectations. As a result, the expectations of the central bank are model-consistent.
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where ξπ,t and ξcb,t are Lagrange multipliers. The first-order conditions read as follows:

ct : −2UCY λCct + γζ(1− z)ξπ,t = 0

(B.37)
cb,t : −2UCY λCb

cb,t + γζzξπ,t − ξcb,t = 0

(B.38)

πt : −2UCY λππt − ξπ + ḡβEt

∞∑
s=0

βs+1 (1− ḡ)s ξπ,t+s+1 = 0

(B.39)

qet : −UCY τ
QE

Y
− 2UCY λqeqet + ξπ,t

(
γζτ

QE

Y
− γσ

1− z

(
zb̄cb +

τQE

Y

))
+ ξcb,tb̄

cb = 0

(B.40)

where solving for ξπ,t in (B.37), and plugging the resulting expression in (B.39), we obtain:

πt = − λC
λπγζ (1− z)

ct +
βλC ḡ

λπγζ (1− z)
Et

∞∑
s=0

βs+1 (1− ḡ)s ct+s+1 (B.41)

which is the intertemporal trade-off reported in the text. Plugging the same expression for
ξπ,t in (B.40) and substituting out ξCb,t using (B.39), we receive:

−τQE
2Y

− λqeqet +
λC

γζ(1− z)

(
γζ − γσ

1− z

)(
zb̄cb +

τQE

Y

)
ct − λCb

b̄cbcb,t = 0 (B.42)

Solving in (B.41) for Ct and plugging the resulting expression in (B.42) we get:

qet = − τQE

λqeYΨ
− λπ
λqeΨ

(
γζ − γσ

1− z

)(
zb̄cb +

τQE

Y

)
πt −

λCb
b̄cbb̄FI

λqeΨ
θt

+
λC

λqeΨγζ(1− z)

(
γζ − γσ

1− z

)(
zb̄cb +

τQE

Y

)
βḡEt

∞∑
s=0

βs+1 (1− ḡ)s ct+s+1 (B.43)

Plugging the intertermporal trade-off in (B.41) and (B.43) in the Phillips curve under de-
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anchored expectations (B.36) we arrive at:

πt =
βḡ

ς

∞∑
s=0

(1− ḡ)sπt−s−1 + ωπ(1− β) + ωπ
θ θt + ωπ

cpcpt + δ̃
βḡ

ς
Et

∞∑
s=0

βs+1(1− ḡ)sct+s+1

(B.44)

where

δ̃ =

[
γζ(1− z) +

(
γζ − γσ

1− z

)2(
zb̄cb +

τQE

Y

)2
λC

λqeΨγζ(1− z)

]
(B.45)

In the expressions above, parameters ωπ, ωπ
θ and ς have been defined below equation (B.25)

above. Expanding the last sum in (B.44) and plugging the intertemporal trade-off (B.41)
repeatedly for current and future consumptions we arrive at:

Et

∞∑
s=0

βs+1(1− ḡ)sct+s+1

= −βḡλπγζ(1− z)

λC

[
P̃ πt +

∞∑
s=0

(
(1− g)s +

s∏
j=0

(
1 + βj+2ḡ

)
βj+1 (1− ḡ)j+1

)
πt−s−1

]
(B.46)

where
P̃ =

∞∏
s=0

(
1 + βs+2ḡ

)
βs+1 (1− ḡ)s+1 (B.47)

Notice that in the above equation setting ḡ = 0 (i.e. no learning), leads the term on the left
hand to equal zero. Plugging (B.46) in (B.44), gathering terms and iterating backwards we
arrive at the equilibrium inflation under optimal policy with de-anchored expectations:

πt =
ωπ(1− β)

ϱ̃
+ ωπ

θ

∞∑
s=0

(
βḡι

ςϱ̃

)s

θt−s + ωπ
cp

∞∑
s=0

(
βḡι

ςϱ̃

)s

cpt−s (B.48)

where
ϱ̃ = 1 + δ̃

(βḡ)2

ς

λπγζ(1− z)

λC
P̃ (B.49)
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and

ι =
∞∑
s=0

[
(1− ḡ)s − δ̃βḡ

λπγζ(1− z)

λC

(
(1− g)s +

s∏
j=0

(
1 + βj+2ḡ

)
βj+1 (1− ḡ)j+1

)]
(B.50)

B.4 Proof of Proposition 2

The log-linearized resource constraint reads as follows:

yt = (1− z)ct + zcb,t +

(
τQE

Y

)
qet

Plugging the intertemporal trade-off (B.41) in the resource constraint and using the fact
that cb,t = b̄FIθt + b̄cbqet:

yt = −(1− z)2λπγζ

λC
πt + zb̄FIθt +

(
zb̄cb +

τQE

Y

)
qet + (1− z)βḡEt

∞∑
s=0

βs+1 (1− ḡ)s ct+s+1

(B.51)
Recall that in the absence of productivity shocks yt = xt as explained in footnote 37. Plug-
ging expression (B.43) for the optimal qet in the expression above and gathering terms, we
obtain:

xt = − τQE

2λqeYΨ

(
zb̄cb +

τQE

Y

)
− λπ

[
(1− z)2γζ

λC
+
γζ − γσ

1−z

λqeΨ

(
zb̄cb +

τQE

Y

)2
]
πt

+

(
zb̄cb +

τQE

Y

)
λCb

b̄cbb̄FI

λqeΨ
θt

+ βḡ

[
(1− z) +

λC
λqeΨγζ(1− z)

(
γζ − γσ

1− z

)(
zb̄cb +

τQE

Y

)2
]
Et

∞∑
s=0

βs+1 (1− ḡ)s ct+s+1

(B.52)

Using the expression in (B.46) to substitute out for for Et

∑∞
s=0 β

s+1 (1− ḡ)s ct+s+1 and gath-

60



ering terms, we receive:

xt = −
(
zb̄cb +

τQE

y

)
τQE

2λqeYΨ
−
(
ΩRE + ΩDEP̃

)
πt

−
(
zb̄cb +

τQE

Y

)
λCb

b̄cbb̄FI

λqeΨ
θt

− ΩDE

∞∑
s=0

(
(1− g)s +

s∏
j=0

(
1 + βj+2ḡ

)
βj+1 (1− ḡ)j+1

)
πt−s−1 (B.53)

where:

ΩRE = λπ

[
(1− z)2γζ

λC
+
γζ − γσ

1−z

λqeΨ

(
zb̄cb +

τQE

Y

)2
]

ΩDE = βḡ
λπγζ(1− z)

λC

[
(1− z) +

λC
λqeΨγζ(1− z)

(
γζ − γσ

1− z

)(
zb̄cb +

τQE

Y

)2
]

The coefficient ΩRE coincides with the coefficient on inflation in the inflation-output gap
trade-off under RE as displayed in equation (23) in the main text. The coefficient ΩDE is
the additional trade-off arising due to de-anchored expectations. As we have argued in the
main text P̃ > 0 and given the definition of ζ = χ(1−z)+σ

1−z
, it follows that γζ − γσ

1−z
> 0.

Consequently, ΩDE > 0. This then implies that the aggregate coefficient on inflation in the
inflation-output gap trade-off under de-anchored expectations is higher (in absolute terms)
than its counterpart under RE. As a result, this means that in the face of a given rise in
inflation from a cost-push shock, the central bank must respond by lowering the output gap
more when expectations are de-anchored than when they are rational. In other words, de-
anchored expectations lead to a heavier inflation-output gap trade-off. Note that under no
learning (i.e. ḡ = 0) the trade-off under de-anchored expectations collapses to that under
RE, as portrayed in equation (23) in the main text.

C Supplementary details on the optimal policy simulations

This appendix presents additional material for our quantitative optimal policy analysis de-
scribed in Section 4. In Appendix C.1, we provide additional details on the solution method
we used to construct the optimal short-term interest rate and balance sheet trajectories.
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Appendix C.2 explores how the gain parameter in the forecasting process of de-anchored
agents influences our findings. Appendix C.3 shows the outcome of implementing only the
balance sheet in an optimal way, while the short-term interest rate follows the Taylor rule
described in (6). Finally, C.4 presents the optimal path of inflation, the output gap and the
two policy instruments in a scenario with agents having heterogeneous expectations.

C.1 Computational details

When solving for optimal policy, we use a method similar to de Groot et al. (2021), Heb-
den and Winkler (2021) and McKay and Wolf (2022) and construct sequence-space linear-
quadratic policy problems. Doing so, we use impulse response functions to monetary policy
and balance sheet shocks from the model specified in Section 2, and a baseline (which is
here the response to a cost-push shock in the samemodel as the one used for the IRFs). Sim-
ilar solution methods can be found in McKay and Wolf (2023) and Barnichon and Mesters
(2023) using empirical models.

As regularly discussed in the literature (e.g. Fernández-Villaverde et al., 2016 and Au-
clert et al., 2021), by certainty equivalence, the first-order perturbation solution of models
with aggregate risk is identical to the solution of the model in linearized perfect-foresight.
Under perfect-foresight, each variable can be written in the sequence space as:

Z = ZB +Az,εp εp = AZ,εsεs +AZ,εpεp (C.1)

In this equation, ZB =
{
ZB

t

}H
t=0

=
{
ZB

0 , ..., Z
B
H

} is the baseline path for each variable
Z in the model, over all periods within a defined projection horizon H. This consists of
the impulse responses AZ,εs of a specific variable to a set of structural shocks εs, under the
prevailing baseline policy rules. In our simulations, the baseline path for each variable will
correspond to the transition path of this variable in response to a cost-push shock (and a
credit shock, if applicable) either in the rational expectation or the de-anchored expectation
model, under the Taylor rule and AR(1) QE/QT process defined in Section 2. The object
AZ,εp collects the impulse responses of each variable Z under the baseline policy rules,
to a set of contemporaneous and expected (i.e. news) policy shocks εp.47 We obtain these

47We expose the solution for one policy instrument, but it is straightforward to extend it to allow for multiple
instruments.
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matrices of impulse responses to policy shocks using the model under rational expectations,
and under de-anchored expectations.48

In this Appendix, we focus on the case of commitment and rational expectations. How-
ever, the process for solving optimal policy under de-anchored expectations is analogous;
it simply requires substituting the set of impulse responses with those obtained from the
model featuring de-anchored agents.49 For scenarios with optimal policy under discretion
and rational expectations, we follow the recursive algorithm of de Groot et al. (2021).

Under commitment and rational expectations, identifying the optimal trajectory of the
desired policy instrument requires solving for a sequence of policy deviations that satisfy
the first-order conditions of the optimal policy problem, as defined in a sequence space
representation:50

min
{Π,C,Cb,QE,εp}

E0

[1
2
(Π′ΛΠΠ+ C ′ΛCC + C ′

bΛCb
Cb +QE ′ΛQEQE)

+ ΞΠ′ (−Π+ΠB +AΠ,εpεp
)
+ ΞC′ (−C + CB +AC,εpεp

)
+ ΞC′

b

(
−Cb + CB

b +ACb,εpεp
)
+ ΞQE′ (−QE +QEB +AQEεp

) ] (C.2)

with Π = {πt}Ht=0 = {π0, ..., πH}, C = {ct}Ht=0 = {c0, ..., cH}, Cb = {cb,t}Ht=0 = {cb,0, ..., cb,H}
and QE = {qet}Ht=0 = {qe0, ..., qeH} the perfect-foresight sequence of inflation, the con-
sumption of the parent, the consumption of the child and the path of the balance sheet.
Additionally, Ξi ≡ diag

(
1, β, . . . , βT

)
⊗ ξ, i = {Π, C, Cb, QE}, are the Lagrange multipli-

ers for both constraints with discount factor β ∈ (0, 1), and Λi ≡ diag
(
1, β, . . . , βT

)
⊗ λj,

j = {π, x}, are the weights associated with each term in the loss function.

The first-order conditions are:
ΛΠ Π = ΞΠ (C.3)

ΛC C = ΞC (C.4)
48de Groot et al. (2021) show how to obtain these matrices from the state-space representation of the

model.
49In the case with de-anchored expectations, agents are entirely backward-looking and are therefore influ-

enced solely by shocks from the point at which they occur, without any anticipation. This contrasts with the
case of rational expectations, in which agents react to anticipated future events. Consequently, in the case of
de-anchored expectations, impulse response matrices are lower triangular.

50We omit the linear qet term from the loss function in our analysis, considering its impact to be marginal.
The inclusion of this term would introduce only a minor adjustment (a "shifter") to the optimal policy rule,
which would be insignificant for the scope of our results.
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ΛCb
Cb = ΞCb (C.5)

ΛQE QE = ΞQE (C.6)

AΠ,εp′ ΞΠ +AC,εp′ ΞC +ACb,εp′ ΞCb +AQE,εp′ ΞQE = 0 (C.7)

Combining them gives:

AΠ,εp,′ (ΛΠ Π) +AC,εp,′ (ΛC C) +ACb,εp,′ (ΛCb
Cb) +AQE,εp,′ (ΛQE QE) = 0 (C.8)

Relationship with the targeting criteria In line with McKay and Wolf (2022), equation
(C.8) is the forecast targeting criterion consistent with our welfare criterion as a function of
impulse responses to monetary policy shocks, under RE. It summarizes the trade-off faced
by a policymaker, independently of the non-policy shocks hitting the economy. It expresses
how a policymaker can set available policy instruments to align the projected path of key
macroeconomic variables — such as inflation and the output gap — with the central bank’s
objectives.

Additionally, mapping the matrices of impulse responses of two of the central bank’s
targets, e.g. those of inflation AΠ,εp and of the consumption of the parent AC,εp, provides
the dynamic relationship over time (i.e. trade-off) between these two targets for an optimal
policy under commitment.

Finding the optimal sequences of policy shocks To find the set of policy shocks that
implement the optimal trajectory for a given policy instrument, we substitute for the law of
motion of all endogenous variables in the loss function:

AΠ,εp′
(
ΛΠ

(
ΠB +AΠ,εpεp

))
+AC,εp′

(
ΛC

(
CB +AC,εpεp

))
+

ACb,εp′
(
ΛCb

(
CB

b +ACb,εpεp
))

+AQE,εp′
(
ΛQE

(
QEB +AQE,εpεp

))
= 0

We can then solve for the optimal sequence of policy shocks ε̃p. For simplicity, stacking all
loss function variables into Zl and all weights into Λ gives:

ε̃p = −
(
AZl,εp′ΛAZl,εp

)−1 (AZl,εp′ΛZB
l

) (C.9)

Optimal deviations ε̃p to the baseline path of the policy instrument are set to offset as well
as possible (in a weighted least-squares sense) the deviations of the policy targets incurred
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Figure 5: Optimal monetary policy, in response to a cost-push shock, with different constant
gains
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Notes: Optimizing the balance sheet and the short-term interest rate, in response to a one standard deviation
persistent (ρcp = 0.8) cost-push shock. The green dashed lines are optimal policy under fully de-anchored
expectations for ḡ = 0.02, while red dashed lines are optimal policy under fully de-anchored expectations
for ḡ = 0.06. The solid black line shows the baseline QT trajectory where QT follows an AR(1) process. The
circle-marked lines are the cases in which only the interest rate is used to minimize the loss function. The
lines without markers are the cases in which both instruments are used in an optimal way.

by the exogenous shocks.

C.2 Role of the gain

In our model, unlike in the case of the endogenous gain approach used in Gáti (2023) or
Carvalho et al. (2023), we calibrate the constant gain parameter which enters the fore-
casting rule of de-anchored agents to a fixed value. But what would be the impacts of a
different gain? Figure 5 presents the outcomes for different gain calibrations. We compare
our baseline calibration with a gain of ḡ = 0.02 (green dashed lines), to a higher gain of
ḡ = 0.06 (red dashed lines), which is the estimated value in the sample pre-1999 in Eusepi
et al. (2020).

As the gain parameter increases, reflecting a greater influence of recent forecast er-
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rors on agents with de-anchored expectations, macroeconomic fluctuations become more
pronounced. Inflation and the output gap deviate further from their targets, prompting a
stronger response from the central bank.

More specifically, adjustments to the policy rate and balance sheet become more pro-
nounced. However, the change in the optimal trajectory of either the interest rate alone
or both instruments remains relatively small. The long-term interest rate and the spread
also reflect this dynamic, adjusting in line with the degree of de-anchoring of expectations.
Overall, the central bank calibrates its policy instruments slightly more aggressively to mit-
igate the destabilizing effects of higher gain values.

C.3 Setting optimally only the balance sheet

In this appendix, we present the outcome of a scenario in which the central bank optimally
conducts its balance sheet policy in response to a persistent cost-push shock, for a given
interest rate rule described in equation (6).

Figure 6 presents the optimal balance sheet policy for commitment and discretion under
RE, and de-anchored expectations. The cross-marked colored lines are the cases in which
only the balance sheet is set in an optimal way, while the lines without markers represent
scenarios where both instruments are set optimally.

The dash-dotted blue lines depict the case of commitment and RE, the dotted red lines
the case of discretion and RE. The analysis reveals that, in response to a cost-push shock,
the central bank is required to significantly contract the size of its balance sheet when QT
is the sole tool that is set optimally. As a consequence, this reduction in the balance sheet
size dampens inflation; however, it comes at the expense of considerable output reductions.
Moreover, inflation now jumps more on impact.

Furthermore, the trajectories under commitment with RE and de-anchored expectations
exhibit important differences. In the RE framework, the central bank can partially offset
the initial fall in the output gap by sustaining a balance sheet above the steady state (over-
shooting) in the medium-run. Therefore, it can commit to keeping a future positive output
gap as inflation decreases, provided that past reductions have been sufficient. In the case
of de-anchored expectations, such commitment is not feasible, thus necessitating a consis-
tently lower balance sheet, with no subsequent elevation above the steady state. In fact,
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Figure 6: Optimal monetary policy with both instruments and optimal QT, in response to a
cost-push shock

0 5 10 15 20
Quarters

-0.02

0

0.02

0.04

0.06

0.08

p.
p.

 d
ev

. S
S

0 5 10 15 20
Quarters

-10

-8

-6

-4

-2

0

2

%
 d

ev
. S

S

0 5 10 15 20
Quarters

0

0.04

0.08

0.12

0.16

ra
tio

 o
ve

r 
an

n.
 o

ut
pu

t
0 5 10 15 20

Quarters

0

0.5

1

1.5

p.
p.

 d
ev

. S
S

0 5 10 15 20
Quarters

-10

-5

0

5

10

%
 d

ev
. S

S

0 5 10 15 20
Quarters

-20

-10

0

10

20

%
 d

ev
. S

S

Notes: Optimizing QT for a given short-term interest rate rule, in response to a one standard deviation per-
sistent (ρcp = 0.8) cost-push shock. The dash-dotted blue lines depict optimal policy under commitment with
fully RE, while the red dotted lines show the case of discretion with fully RE. The green dashed lines are opti-
mal policy under fully de-anchored expectations. The solid black line shows the baseline QT trajectory where
QT follows an AR(1) process. The cross-marked lines are the cases in which only the balance sheet is used to
minimize the loss function (Only QT). The lines without markers are the cases in which both instruments are
used in an optimal way (QT and IR). To implement a transition from a high balance sheet level to a lower (i.e.
steady state) level, we first apply a positive QE shock. Then, four periods after this initial shock, we introduce
a cost-push shock. We show the impulse responses under optimal policy from this period onwards, when the
cost-push shock hits.

under de-anchored expectations the central bank balance sheet remains below the steady
state throughout, perpetuating a lower output gap.

C.4 The case of heterogeneous expectations

In Section 4, we detailed optimal monetary policy trajectories under our two extreme ex-
pectation scenarios (RE and de-anchored expectations). In this appendix, we examine how
the central bank should implement its normalization strategy, for different shares of agents
having anchored or de-anchored expectations. In this case, the shares of each type of ex-
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Figure 7: Optimal monetary policy, with heterogeneous expectations
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Notes: Optimizing QT and the interest rate, in response to a one standard deviation persistent (ρcp = 0.8)
cost-push shock. The solid blue lines depict optimal policy under commitment with fully RE. The green dashed
lines are optimal policy under fully de-anchored expectations. The remaining lines are different levels for the
fraction of anchored (i.e., RE) agents. The solid black line shows the baseline QT trajectory where QT follows
an AR(1) process. To implement a transition from a high balance sheet level to a lower (i.e. steady state)
level, we first apply a positive QE shock. Then, four periods after this initial shock, we introduce a cost-push
shock. We show the impulse responses under optimal policy from this period onwards, when the cost-push
shock hits.

pectations formation are uniform across the two types of households, the parent and the
child.

Figure 7 reports the results when the central bank uses both instruments, the short-term
policy rate and the balance sheet, in response to a cost-push shock. The different trajec-
tories depicted reflect varying proportions of agents having anchored expectations, each
signifying a distinct level of confidence in the central bank’s commitment. This figure con-
firms that while expectations anchoring significantly affects the interest rate path, the QT
policy path remains consistent across different expectation profiles. This invariance indi-
cates that the central bank’s QT strategy is robust to variations in the degree of expectations
anchoring. In essence, whether a larger fraction of agents are fully anchored or not, the
balance sheet adjustments that the central bank must implement do not vary, highlight-
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ing a clear distinction in the sensitivity of monetary policy instruments to the anchoring of
expectations under the optimal policy with both instruments in this model.
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